RADIATION QUANTITIES AND UNITS GUIDE

Activity

✤ The rate of disintegration per unit time is measured in curies and based on the following standard:

Unit	Quantity
1 curie (Ci)	3.7 X 10 ¹⁰ dps (disintegrations per second)
1 millicurie (mCi)	3.7 X 10 ⁷ dps = 1 X 10 ⁻³ Ci
1 microcurie (µCi)	3.7 X 10 ⁴ dps = 1 X 10 ⁻⁶ Ci
1 nanocurie (nCi)	37 dps = 1 X 10 ⁻⁹ Ci
1 picocurie (pCi)	3.7 X 10 ⁻² dps = 1 X 10 ⁻¹² Ci
dps	cps/ efficiency of detector for specific radionuclide
1 becquerel (Bq)	1 disintegration per second

Radiation Exposure

 The measurement of radiation exposure in air as ionizations per unit mass of air due to x-ray or gamma radiation

Unit	Quantity
1 Roentgen (R)	2.58 X 10-4 Coulomb/Kg air
1 milliroentgen	2.58 X 10-7 Coulomb/Kg air = 1 X 10-3 R

Absorbed Dose

 The measurement of radiation absorbed dose (rad) represents the amount of energy deposited per unit mass of absorbing material

Unit	Quantity	
1 rad	100 ergs/gram	
1 rad	1 X 10-2 Joule/kg	
1 millirad (mrad)	1 X 10-5 Joule/kg = 1 X 10-3 rad	

Dose Equivalent

- The measurement of biological effect of radiation requires a third unit called a quality factor (QF). The quality factor takes into account the different degrees of biological damage produced by equal doses of different types of radiation.
- 1 rem (Roentgen equivalent man) is the product of the amount of energy absorbed (rad) times the efficiency of radiation in producing damage (QF)

$$1 \text{ rem} = 1 \text{ rad } x \text{ QF}$$

For X and gamma radiations and most beta, the QF =1. Therefore, 1 rem = 1 rad Alpha radiation has a QF of 20

QF for neutrons ranges from 2 to 11

S.I. System

The S.I. system is widely used in Europe and is gradually being adopted in the United States

Current Unit	S.I. Units	Conversion
Curie (Ci)	Becquerel (Bq)	1 Ci= 3.7 x 1010 Bq
rad	Gray (Gy)	1 rad= 1 X 10-2 Gy
rem	Sievert(Sv)	1 rem=1 X 10-2 Sv