

Respirable Crystalline Silica -Limited Sampling and Risk Assessment

Pierce Hall University of California - Riverside Riverside, California

Omega Project #2019-3424UCR August 20, 2019

Prepared For:

Prepared By:

Rebecca Lally University of California - Riverside 395 West Linden Street Riverside, California 92507

Richard Wade, PhD., MPH. Omega Environmental Services, Inc., 4570 Campus Drive - Suite 30 Newport Beach, California 92660

P

Richard Wade, PhD., MPH.

Senior Scientist - Toxicologist

Steve Rosas, CAC.

Principal and Senior Project Manager

TABLE OF CONTENTS

1.	INTRODUCTION	1
2.	EXECUTIVE SUMMARY	1
3.	STUDY OBJECTIVES AND PROJECT DESIGN	2
4.	SAMPLING METHODOLOGY	2
5.	SAMPLE RESULTS	3
6.	CONCLUSIONS AND RECOMMENDATIONS	6
5.	LIMITATIONS	7

APPENDICES

APPENDIX 1	OMEGA FIELD NOTES
------------	-------------------

- APPENDIX 2 DRAWING SAMPLE LOCATIONS
- APPENDIX 3 PHOTOGRAPHS
- APPENDIX 4 SGS GALSON LABORATORY REPORTS AND CHAIN OF CUSTODY
- APPENDIX 5 TSI 9306-04 AEROTRAK INSTRUMENT CALIBRATION REPORT

1. INTRODUCTION

On August 13, 2019, Kumar Gunaratna, Senior Industrial Hygienist with Omega Environmental Services, Inc. (Omega) conducted a limited sampling assessment at the Pierce Hall, University of California – Riverside (UCR) located in Riverside, California. Ms. Rebecca Lally, Certified Industrial Hygienist with Environmental Health and Safety, UCR (the Client) provided background information and site access for the assessment.

2. EXECUTIVE SUMMARY

According to an Incident Report provided by the Client, on July 5 and 6, 2019, during proposed asbestos abatement activities conducted on the 1st Floor - south hallway, concrete dust was released into areas adjacent to the work areas including faculty offices and laboratories on the south side of the building. Subsequent micro-vac samples were collected from the impacted areas. The laboratory analytical results indicated the presence of silica quartz in the analyzed samples.

The Client retained Omega to collect data and provide a risk evaluation of the possible exposure of respirable crystalline silica (RCS) to the faculty, staff, students and visitors

Omega's study discusses the multiple samples collected during the assessment for RCS, laboratory analytical results and a post remediation/cleanup risk assessment for employees and visitors to the Pierce Hall building (south end) area of impact. Omega also reviewed and analyzed sample results provided by another Consultant to the Client.

Omega's scope of work was limited to the following:

- Document review,
- Conduct limited air sampling for RCS and surface wipe samples for Silica: (Quartz, Cristobalite and Tridymite), and collect direct read measurements for aerosol particulate sizes 3, 5 and 10 micrometers at each air sample location, and
- Develop a written report discussing the findings and the risk assessment.

On critical evaluation of the collected data, relative to the known toxicity values and the regulatory standards for airborne RCS, it is Omega's opinion that the levels of RCS found were not hazardous to the health of any parties entering into or occupying the building. It is also our opinion that residents of the building during or immediately after the abatement were not exposed to any significant health risk resulting from any RCS dust that may have leaked from the abatement containment into adjacent areas.

The Appendices presents Omega Field Notes, Drawing – Sample Locations, Photographs, SGS Galson Laboratory Reports and Chain of Custody and TSI 9306-04 Aerotrak Instrument Calibration Reports.

3. STUDY OBJECTIVES AND PROJECT DESIGN

The overall objective of the study was to evaluate the concentrations of airborne RCS and total non-RCS respirable particles found in and around the impacted areas. In an effort to estimate historic airborne RCS in the building, Omega also collected data on possible depositions of RCS particles throughout the building. Based on this data we would then evaluate potential risk to occupants of the building.

During the subject assessment, Omega collected three types of samples:

- Interior surface wipe samples of settled dust to test for the presence of RSC particles,
- Airborne samples to evaluate airborne RCS inside and outside the building, and
- Real time airborne samples for total respirable particles inside and outside the building.

In addition, Omega reviewed bulk dust sample analytical results collected by Microvac method by another environmental consulting firm.

4. <u>SAMPLING METHODOLOGY</u>

Surface wipe samples (wipes) were collected using 5-micron (u) PVC filter media, rigid sample containers with screw caps, disposable latex gloves (unpowdered) and one-hundred square centimeter (100 cm²) disposable templates provided by SGS Galson Laboratories¹ (Galson). Wipes were collected on horizontal surfaces where visible dust was noted at the time of the assessment. One set of gloves and a template was used to collect each sample. Omega used a tape measure to note the sample areas where the 100 cm² template could not be used. After collecting the sample, the sample media was inserted into a rigid sample container and secured using the screw cap. An unused sample media was included into the surface wipe sample mixture to represent the media batch and for Quality Assurance and Quality Control (QAQC) purposes. Samples were issued unique identifications to represent the sampling locations and documented on a laboratory provided chain of custody (COC).

Area air sampling was conducted by Omega using the media and equipment provided by Galson. SKC cyclones were attached to the pre-weighed 3-piece 37-millimeter (mm) filter cassettes. The samples were mounted on to sampling stands at approximately 4.5 feet height from the floor levels. The samples were connected to sample vacuum pumps calibrated at-site to 2.5 liters per minute. Sampling was conducted at nine (9) separate locations. An unused filter media was included into the sampling mixture to represent the sample media batch and for QAQC purposes.

¹ SGS Galson Laboratory is accredited by the American Industrial Hygiene Association (AIHA) Laboratory Accreditation Program (LAP) and is located at 6601 Kirkville Road in East Syracuse, NY 13057.

The collected air samples were issued unique identifications to represent the sampling locations and documented on a laboratory provided chain of custody (COC). Samples with the COC was delivered to the Galson Offices located at 16 Technology Drive, Suite 132 in Irvine California.

Direct read spot measurements were collected for particulate matter (PM) sizes 3, 5 and 10 microns at each air sample location. Omega used a factory calibrated TSI 9306-04 Aerotrak laser particle counter (LPC) to collect the direct read measurements. The LPC was held at arms-length at a height of approximately five feet (5') from floor level to collect a sample at each location. The LPC was programmed to collect a sixty (60) second measurement. Omega also measured wind speed, wind direction, temperature and relative humidity at the two exterior sample locations. Measurements were scribed onto a field sample data sheet.

5. <u>SAMPLE RESULTS</u>

5.1 Total Airborne Respirable Particulates (Exterior and Interior):

Analyte	Sample Time	PM3 (p/m^3)	PM5 (p/m^3)	PM10 (p/m^3)	Temp 0F	RH %	Wind Speed (f/m)	Comments
Exterior - West	9:25 AM	560,424	208,127	37,456	74	59	6	F/West to East - Towards the building entrance
Exterior - West	12:25 PM	213,428	86,572	14,488	95	26	450	F/West to East - Towards the building entrance
Average - Exterior We	st of the building:	386,926	147,350	25,972	85	43	228	
Total Sum Particulat	es- Exterior West:	560,248						
Exterior - East	9:30 AM	518,021	169,965	27,562	74	56	48	F/East to West in courtyard surrounded by 3-story buildings
Exterior - East	12:30 PM	239,929	110,601	23,675	95	26	15	F/West to East - Towards the building entrance
Average - Exterior Ea	st of the entrance:	378,975	140,283	25,619	85	41	32	
Total Sum Particulates- Exterior East: 544,877								
Average - Exterior: 382,951			143,816	25,795	85	42	NA	
Average- Total Sum Parti	552,562							

Direct Read - Exterior Aerosol Particulate Measurements

PM - particulate matter, p/m^3 - particles per cubic meter, 0F - degrees Fahrenheit; RH - relative humidity as a percent; f/m - feet per minute

Direct Read - Indoor Aerosol Particulate Measurements

Sample Location	Sample Time	Units	PM3	PM5	PM10	Comments			
Entrance Lobby - West	9:35 AM	p/M^3	124,382	51,590	8,834				
1st Floor Hallway (South)	9:37 AM	p/M^3	30,389	14,488	2,473	1st floor - foot traffic. Noted during sampling.			
Room 1125	9:41 AM	p/M^3	24,382	9,894	2,120	South hallway ceiling removed. Fire proofing and other services such as HVAC duct, pipes			
Room 1144	9:45 AM	p/M^3	345,583	218,728	60,777	visible in the hallway.			
Room 1127	10:04 AM	p/M^3	24,735	14,488	4,240				
Average - 1st	Floor		109,894	61,838	15,689				
Total Sum Particulates - 1st Floor:									
Room 2125	9:59 AM	p/M^3	97,527	57,597	14,841	2nd Floor - Hallway ceiling intact. Few ceiling			
2nd Floor Hallway (South)	10:02 AM	p/M^3	6,714	-	-	noted.			
Average - 2nd Floor			52,121	28,799	7,421				
Total Sum Particulates - 2nd Floor:		88,340							
Average - 1 & 2 Floors			81,007	45,318	11,555				
Total Sum Particulates	- 1& 2 Floors:	137,880							

PM - particulate matter; p/m^3 - particles per cubic meter;

For total respirable (<10 micron) particles, it was found that the ambient air outside Pierce Hall had an average of 552,562 respirable particles per cubic meter (m³). The indoor air on the first floor of Pierce Hall had an average of 187,421 particles per m³. The indoor particle counts for the second floor average 88,340 particles per m³. The overall respirable particle concentrations inside the building were found to be significantly lower than those found outside the building. The highest indoor sample was from a vacant office on the first floor. Historically most of these respirable non-RSC particles are amorphous sand, solid opaque particles, pollen, fungal spores and other mineral or vegetative particles. These data are common finding in similar studies.

5.2 Air Sampling - Respirable Crystalline Silica (Exterior and Interior):

#>	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10
Units	Ext West	Ext East	1st Flr Lobby	1st Flr So Hall	Rm 1144	Rm 1125	2nd Flr So Hall	Rm 2125	Rm 1227	QAQC/ Batch blank
μg	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
μg	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
μg	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
μg	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
μg/M^3	< 6	< 7.1	< 6 .9	< 6.7	< 6.5	< 6.6	< 6.4	< 6.8	< 6.8	NA
L	826.50	700.00	726.80	741.00	769.50	758.70	781.20	737.10	734	-
М	290.00	280.00	285.00	285.00	285.00	281.00	279.00	273.00	272	-
μg/M^3	< 3.63	< 4.14	< 4.10	< 3.98	< 3.86	< 3.86	< 3.72	< 3.87	< 3.85	-
μg/M^3	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25	25.00
μg/M^3	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50	50.00
	#> Units µg µg µg µg/M^3 L M µg/M^3 µg/M^3 µg/M^3	#> A1 Units Ext West μg <5	#> A1 A2 Units Ext West Ext East μg <5	#> A1 A2 A3 Units Ext West Ext East 1st Ft Lobby µg <5	#> A1 A2 A3 A4 Units Ext West Ext East 1st Flr Lobby 1st Flr So Hall µg <5	#> A1 A2 A3 A4 A5 Units Ext West Ext East 1st Fr Lobby 1st Fr So Hall Rm 1144 μg <5	#> A1 A2 A3 A4 A5 A6 Units Ext West Ext East 1st Flr Lobby Ist Flr So Hall Rm 1144 Rm 1125 µg <5	#> A1 A2 A3 A4 A5 A6 A7 Units Ext West Ext East $1st$ Fh Loby $1st$ Fh So Rm 1144 Rm 1125 $2nd$ Fh So Hall µg <5	$\#>$ A1A2A3A4A5A6A7A8UnitsExt WestExt East1st FL Loby $lst FL'soRm 1144Rm 11252nd FLRm 125\mug< 5< 5< 5< 5< 5< 5< 5< 5< 5\mug< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< 5< $	#>A1A2A3A4A5A6A7A8A9UnitsExt WestExt East $1st FL cobs$ $last FL'sobs$ $Rm 1144$ $Rm 1125$ $cond FL'so FL'$

Galson Laboratory Analytical Results - Respirable Crystalline Silica (RCS), Quartz, Cristobalite and Tridymite

µg - micrograms; µg/M^{^3} - micrograms per cubic meter, L - liter, M - minutes; NA - not appli Laboratory analytical method - Modified NIOSH 7500/Modified OSHA ID-142; XRD

Laboratory analytical method - wioduled VIOSH 7500/Moduled USHA ID-142, ARD Notes: Construction site at the north end of the building. Building occupants have been informed to keep the openable windows closed at all times

Notes: Construction site at the north end of the building. Building occupants have been miormed to keep the openable windows closed at all times.

The analytic findings for airborne RCS were at or below the laboratory analytic detection levels. Thus, the results are reported as less than the detection levels for each type of RCS particles (Quartz, Cristobalite, Tridymite).

The airborne RCS studies show that samples taken both inside the building and from outside, ambient air are consistently very low. The outside air averaged less than 7.1 microns/m³ of RCS. The inside air on the first floor averaged less than 6.7 microns /m³. The inside air on the second floor averaged less than 6.8 microns/m³. Thus, based on this sampling there is no evidence of any RCS in the outside or indoor air at the time of sample collection.

5.2 Surface Sampling – Total Crystalline Silica (Interior):

Sample #		W1	W2	W3	W4	W 5	W6	W 7
Sample Location	Units	Rm 1141 - Fixed Windowsill	Rm 1139 - Top of filter/Air Scrubber	1105 - Top of metal cabinet near door	End of Hall @ 1225G - Top of Metal Cabinet	1st Flr East Entry - fixed windowsill (N)	Rm 2134 - Top of metal cabinet	QAQC/ Batch Blank
Sample Area	cm^2	258.00	100.00	100.00	100.00	413.00	100.00	NA
Lab Result/Quartz	mg	0.250	0.270	0.064	0.011	0.110	0.068	< 0.0050
Lab Result/Quartz	mg/cm^2	0.00098	0.00270	0.00064	0.00011	0.00027	0.00068	NA
Lab Result/Cristobalite	mg	< 0.029	< 0.036	< 0.0080	< 0.0050	< 0.018	< 0.012	< 0.0050
Lab Result/Cristobalite	mg/cm^2	< 0.00011	< 0.00036	< 0.000080	< 0.000050	< 0.000044	< 0.00012	NA
Lab Result/Tridymite	mg	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
Lab Result/Tridymite	mg/cm^2	< 0.000078	< 0.00020	< 0.00020	< 0.00020	< 0.000048	< 0.00020	NA

Galson Laboratory Analytical Results - Total Crystalline Silica: Quartz, Cristobalite and Tridymite

cm^2 - square centimeter; mg - milligram; NA - not applicable

Laboratory analytical method - Modified NIOSH 7500/Modified OSHA ID-142; XRD Windows along the south perimeter building is closed all of the time.

Noted dust and debris on most windowsills.

Rm 1139 - Room air scrubber with HEPA air filter was operational at the time of the sampling. The prefilter located on the top of the scrubber showed heavy dust deposited.

Wipe samples taken inside the building showed only trace levels of Total Crystalline Silica (TCS) at or near the laboratory analytic detection levels. The exception was the surface wipe from a sample of a continuous running HEPA room air filter in a laboratory (Room 1139). This filter was running during the remediation efforts and is thus considered a good indicator of potential airborne RCS. This sample (W2) had 2.7 micrograms (ug) of TCS per square centimeter (cm²) on its surface. The second highest levels were from a windowsill (W1) at 0.98 ug/cm². That window as was determined by the field inspectors to never have been cleaned post remediation. These numbers indicate very low levels at or near the analytic detection limits.

Any RCS detected on surfaces are not airborne and thus do not constitute a health risk. Based on these very low numbers of TCS on surfaces, it is our opinion that even if these instantly all became airborne the immediate concentrations in the air would not constitute a health risk to occupants and would not come close to any airborne safety standards set by regulatory agencies (RCS Action Level 25 ug/m³ and the Permissible Exposure Limit - operational standard of 50 ug/m³).

In addition, to the samples taken by Omega Environmental we reviewed the TCS analytic results of three Microvac bulk samples taken by Ambient Environmental Inc., on July 24, 2019. These three samples do not provide information as to the sample locations. They were simply bulk samples collected by a Microvac device and the total bulk analyzed for the presence of TCS particles.

These results indicate only trace levels of **TCS** detected (120-140 ug.) Due to the method used to collect the samples it is impossible to determine area or volumes of collected surface dust. As with the more quantitative Omega samples, these samples show only trace levels of TCS. These TCS particles could have been from multiple sources, such as the trace levels found in the Omega outside ambient air samples. Omega also noted a nearby construction site located just north of the Pierce Hall building.

6. <u>CONCLUSIONS AND RECOMMENDATIONS</u>

Analysis of all the air and wipe samples collected as part of this study show very low (non-detect or at or near the laboratory detection levels) levels of RCS in ambient air or on surfaces, where dust would collect.

Although the total dust levels were high outside the building the total dust levels inside the building were less than one quarter the levels outside of the building. It is suggested that the elevated levels of total respirable dust outside the building are elevated given the geographic location of the campus (semi-arid desert environment) and the on-going construction activities nearby.

All the interior wipe samples all were either non detect or near the laboratory detection levels for TCS. The only two (2) samples with detectable levels for TCS were noted on the wipe samples were (a) on the surface of a HEPA² air-filter where the air scrubber had been operational during the abatement activities and (b) on a windowsill that was not cleaned post remediation. The HEPA filter surface sample provides evidence of only trace levels of TCS being generated during the remediation procedure. The levels of TCS detected in wipe samples would not constitute levels that if airborne would generate any human health risk during or post remediation. The windowsill sample results indicate only trace levels of TCS and again suggest only trace levels of RCS were generated during the remediation procedure.

Based on the wipe sample results taken inside the building it can be considered that the total mass of any TCS that even if it was to become airborne would be far less than any health advisory or regulatory concern. (OSHA time weighted exposure levels, TWA 50 ug/m³ for 40-hour exposure over 40 years or any action levels 25 ug/m^3).

Based on the above findings it is Omega's opinion that there was no significant health risk from RCS to employees, students, or visitors to the building during or post remediation activities.

7. LIMITATIONS

This report and opinions are based on evidence provided by the University of California – Riverside, Environmental Health and Safety officials and the results of the samples collected by Omega Environmental Inc., and Ambient Environmental Inc. If additional information or findings are made available, we reserve the right to change our opinions.

Our services consist of professional opinions, conclusions, and recommendations that are made in accordance with generally accepted consulting standards, principles, and practices. Reasonable attempts have been made to provide a report that is complete and accurate with respect to Omega's authorized scope of investigation. Omega assumes no liability for damages, which might result from errors contained in the report or conditions, which the report fails to disclose.

² High Efficiency Particulate Air

APPENDIX 1

OMEGA FIELD NOTES

PROJECT NAME	Pierce Hall (Sciences)	DATE	08/13/19
SITE ADDRESS	UCR, Riverside, CA	Omega PROJECT #	2019-3424UCR
SITE CONTACT	Ms. Rebecca Lally, CIH with UCR	IH NAME	K Gunaratna

630 am

Omega arrived at site – Lot 1 to purchase parking permit (Service). The parking office closed until 7 am. Called Rebecca and met at Lot 24. Rode with Rebecca to Pierce Hall.

700 am

Began calibrating the personal pumps to 2.5 LPM with SKC cyclone attached. After calibrating the pumps checked with Rebecca where the indoor air sample locations would be.

7.35 am

Began area air sampling using the lab provided media (3pc 37mm pre weighed pvc filter cassette) fixed to lab provided SKC cyclones. Sample media/cyclones were attached to sampling stands (tripods) at approximately 4 - 41/2 feet off the finished floor level. Sample locations are identified on floor plans of the Pierce Hall – south side (1st and 2nd floors).

A1 & A2 - Outdoor locations: Outside the west and east entrances.

Indoor samples were collected in the following areas:

- A3 Lobby/waiting area at SW corner,
- A4 1st floor south hall near Room 1125,
- A5 Room 1144 (Vacant Off),
- A6 Room 1125 (Physics Lab fume hood was operational nearby),
- A7 2nd floor hallway outside Room 2121,
- A8 2nd floor Room 2125 (Faculty Lounge), and
- A9 Room 1227 (Office).
- A10 Unused media was included into the sample mix for the batch QAQC.

The sample locations were identified by Rebecca; probably based on the background info she had received from the building Management.

Refer to the area air sampling locations – Drawing

9.25 am

Began collecting spot measurements for PM3, PM5 and PM10 using TSI 9306-04 Aerotrak (SN 93061642012 – Calibration passed on 8/12/19). Refer to Pine Environmental Services, LLC calibration reports.

Temperature, RH and wind speed/direction was noted for the outdoor sample locations. 2 sets of measurements were collected at 9.25 am and 12.25 pm.

Field Logs

Surface wipe samples were collected using the filter media (5-micron pvc filter without the cassette) supplied by the lab. Unpowdered latex gloves and 100 cm² disposable sampling templates were also provided by the lab for the sampling. The sampling was conducted using the latex gloves and a template or by measuring the sample area using a measuring tape (in areas where the template would not fit, i.e., windowsill). Samples collected were inserted into lab provided plastic rigid sided containers with screw caps. A set of gloves was disposed as trash after using to collect each sample. Surface sample locations were also identified by Rebecca.

Visible dust and debris were noted on most horizontal surfaces sampled.

Surface wipe sample locations.

W1 - Room 1141/Physics lab: noted dust and debris on the metal windowsill. Sample was collected on this metal surface.

W2 - Also noted a HEPA scrubber operational in Room 1139/Physics Lab located adjacent to 1141 (opened connecting door). The prefilter of the scrubber was completely impacted with dust and debris. Per Rebecca collected sample on the HEPA/Pre filter media.

W3 - Room 1105/Office: Sample was collected on top of a metal cabinet located near the entrance door.

W4 - Hallway outside Room 1225G: Sample was collected on top of a metal cabinet located at the end of the Hallway.

W5 - East lobby/waiting area: Sample was collected on the metal windowsill on north side.

W6 - Sample was collected on top of a metal cabinet located at the NW corner of Room 1234.

W7 - 1 unused wipe filter media was included into the sample mix for the batch QAQC.

Rebecca was advised that a building-occupant meeting had been scheduled for 1.30 pm today. She thought it would better to have the sampling completed and Omega off site before the meeting started.

12.20 pm

Began collecting the air samples. Air and surface samples collected were given unique identification numbers and recorded in a lab provided COC. After noting the post sampling calibration checks, calculating the air sample volumes, Omega was off site at approximately 1.35 pm.

Air Sample Data Sheet

Project Number	2019-3424UCR	
Project Site Address	Pierce Hall, University of California - Riverside	
Sample Date	813/19	
Analysis Method	Wipes-Crystalline Silica and area air sampling for Respirable Crystalline Silica	OMEGA
Analysis by	Galson	ENVIRONMENTAL
Date Analyzed	TBD	

Sample ID: A 1-735	Start time: 0735	End time: 12	KA
Sample location: Ex TERIOL- OUTSIDE	Flow rate (LPM): 2/LL	141/3.2 =	281
WEST GATILY to Sound BUILDING	Total time: 290	Total volume:	826.54
Other comments:			SI
		(Y

Sample ID: A 2 - 740	Start time: 0740	End time: 12-20	1-1
Sample location: EXTE HOR - OUTSIDE	Flow rate (LPM): 2/2	2/2 2(2/2)	
EAST ENTIPHOLE TO SO. BLDG	Total time: 080/	Total volume	1004/
Other comments:			A.
	N		

Sample ID: A3-745	Start time: 0.FUS	, End time: 1230
Sample location: INT/ENTRANCE	Flow rate (LPM): 212	2.6 22:08
LOBBY/WATTING S.W COONCOL	Total time: 28	Total volume 70 -
Other comments:		
	V	

Sample ID: A4 - 750	Start time: 0750	End time: 23)
Sample location: INT/ 1St Flood HACE-SO	Flow rate (LPM): 21/	127 7 26 2 19.
NEAR ROSM 129	Total time: 200	Total volume: 79
Other comments:		

- CLE 7-2	0753	
Sample ID: SEADATO	Start time:	, End time: 1.38
Sample location: Room 1123 BAST END	Flow rate (LPM): 4/1	2.9 727
Purily Hord on ordinand.	Total time:	Total volume:
Other comments: A with N	A Day SI	
Rom - 1171 Voen	gay	V

	0755
Sample ID: +- +3 + V · T)	Start time: 0 55 End time: 12.36
Sample location: Port 1142 CAST	Flow rate (LPM): 21/ 2.9 = 270
Vacan From Las 1125 Bost	Total time: 06, Total volume: 78.7
Other comments: 1 AD	
Las them tool operations	V

Sampler name (print)	: K Gunaratna		
Signature	:	Page	of

Air Sample Data Sheet

Project Number	2019-3424UCR	
Project Site Address	Pierce Hall, University of California - Riverside	
Sample Date		
Analysis Method	Wipes-Crystalline Silica and area air sampling for Respirable Crystalline Silica	OMEGA
Analysis by	Galson	ENVIRONMENTAL
Date Analyzed	TBD	

Sample ID: A 7-800	Start time: 0800	End time: $12:39$
Sample location: 2nd P(Der	Flow rate (LPM): 212	3.1 = 2.8
Hallway outside Room 2121	Total time: 0.76	Total volume:
Other comments:		(+0).0

	0	20013
Sample ID: A & -801	Start time: 0805	End time:
Sample location: and Ploas Buyley es	Flow rate (LPM): 242	12.9 = 23=)
Lounge form 2125	Total time: 073	Total volume: 121.
Other comments:	012	(1)1)

Sample ID: A7-810	Start time: 0810	End time: 120	F2
Sample location: 19T PLOEV	Flow rate (LPM): 2-12	209 2 2:	VAI
affor 1227 ou 1ST Floor	Total time:	Total volume:	124.6
Other comments:	M		1.1
	(

Sample ID: Alo-QAQC	Start time:	End time:
Sample location:	Flow rate (LPM):	
131904 10690 K-	Total time:	Total volume:
Other comments:		

Sample ID:	Start time:	End time:
Sample location:	Flow rate (LPM):	
	Total time:	Total volume:
Other comments:		

Sample ID:	Start time:	End time:
Sample location:	Flow rate (LPM):	
	Total time:	Total volume:
Other comments:		

Sampler name (print)	: K Gunaratna	
Signature	:	Page of

Air Sample Data Sheet

-

Project Number	2019-3424UCR			
Project Site Address	Pierce Hall, University of C	alifornia - Riverside		\square
Sample Date		Succession Paralel (Child Child Chi		
Analysis Method	Wipes-Crystalline Silica and area a	ir sampling for Respirable Crystal	ine Silica	OMEGA
Analysis by	Galson			ENVIRONMENTAL
Date Analyzed	TBD			
			na sana sana na sana sana sana	2000-001-001-001-001-001-001-001-001-001
Sample ID: W -	- 1191	Start time:	End time:	
Sample location: W	indea sin	Flow rate (LPM): 120	. 4 × 10	= 258 00
5'	- Fast A	Total time:	Total volun	ne:
Other comments:	Mptal Sarfell	/		

- 1129	r	
Sample ID: WZ - HHT 113	Start time:	End time:
Sample location: Filler HEPA	Flow rate (LPM). 100	CM
Air Scrabben	Total time:	Total volume:
Other comments: We Liffer Sarta		
		annan an a
Sample ID: $1/26 = 1105$	Start time	End time:

Sample ID: W3 1105	Start time:		End time:	
Sample location:	Flow rate (LPM):	102	Cult	
Top of Metal Cabingt.	Total time:		Total volume:	
Other comments:				
Near wood				

Sample ID: W4 MAG Start time: Hall End time: Sample location; Flow rate (LPM): 100 cm2 nutai Double 20 Total time: Total volume: Other comments: Cubiner top.

Sample ID: US - ZRSt GARANG	Start time:	End time: γ	1. 2
Sample location: Fey-1 - A 18-12-	Flow rate (LPM):	2"×32" 64 Fact =	413 CW
CIL ALLI	Total time:	Total volume:	
Other comments:			
			7
			-1

Sample ID: $\dot{w}_b - 2134$	Start time:	End time:
Sample location:	Flow rate (LPM).	103 M M
Millian Calls 19p	Total time:	Total volume:
Other comments:		

w7- CABC

Sampler name (print)	: K Gunaratna		
Signature	:	Page of	

IAQ - Field Data Sheet					
Project Number	2019-3424UCR	IH Name	K Gunaratna		
Project Name	Pierce Hall, UCR	Equip/SN	Hygrometer/Extech/1037978	\bigcirc	
Project Site Address	VOA, PIVERSIDE, A	Equip/SN	Air Velocity meter/TSI 5725/T57251517001	OMEGA	
Assessment Date	08/13/19	Equip/SN	Particle Counter/TSI 9306 LPC/SN 1642012	ENVIRONMENTAL	

Outdoor Measurements: X Indoor Measurements:

Sample location	Sampling Time	PM ₃	PM5	PM ₁₀	Wind Direction	Wind Velocity (f/m)	Temp ⁰ F	RH %	Comment/s
Ext. West (SamplA)	9.25A	560 424	208127	37456	W-FE	5-6	74	59	In the shade
2 N EASTE N AZ	9.30	518021-	169965	27562	E-DW	2-48	74	56	SHADE/CI.YAAD
3TAT. WATTING AREA(A3)	9.35	124382	51590	8834	-				
4 M HALCAY	9.37	30389	14 488	1473					1st Ploev
5 11 #1125 (, Ab	9.41	24382	9894	2120					
6 1 H1144 C AS	9.45	345583	218728	60777	e ¹				vocant effore
7 N #1225 @ A8	9.59	97527	57597	14841					3
8 HALL @ A7	10.02	6714	0	Ð				,	and Ploof
9 n #1127 C. A9	10.04	24735	14488	4240					
10 Ext. West @ Sample Al	12.25° PM	213428	86572	14488	W-FE	26-450	95	26	No wore shading
11 Ext. East @ SampbAz	12.3000	239929	10601	23675	E-IW	5-15	95	16	_4 _
12									
13		Note	Jaup	6 12	- Puil	ding b	oasty	ivd. 8	ridrug (35tory)
14			on	all 4	- sid	os. Th	e Wi	nd au	peard flow aver the
15	2	story	Pierce	Bld	ve-d	Livect .	all (B	sunce	all.
		Г		1			10-		10/

Page # ____

APPENDIX 2

DRAWING - SAMPLE LOCATIONS

Omega Project #2019-3424UCR Date – August 20, 2019

SAMPLE LOCATIONS 2nd Floor

APPENDIX 3

PHOTOGRAPHS

Photographs

Exterior sample collected outside the South Main Entrance to Pierce Hall.

An interior sample collected in a 1st floor laboratory (#1125).

Photographs

Interior wipe sample collected on a metal windowsill in a laboratory (#1141).

An interior surface wipe sample collected on the top surface of a HEPA sir filter located in a laboratory (#1139).

Photographs

Interior air sample location – 1^{st} Floor south hallway where the floor tile and mastic was abated.

Exterior sample location – Direct Read Laser Particle Counter.

APPENDIX 4

${\rm SGS}$ Galson Laboratory Reports and Chain of Custody

Mr. Kumar Gunaratna Omega Environmental Services 4570 Campus Dr., Ste. 30 Newport Beach, CA 92660 August 15, 2019

Account# 25140

Login# L488904

Dear Kumar Gunaratna:

Enclosed are the analytical results for the samples received by our laboratory on August 14, 2019. All samples on the chain of custody were received in good condition unless otherwise noted. Any additional observations will be noted on the chain of custody.

Please contact client services at (888) 432-5227 if you would like any additional information regarding this report. Thank you for using SGS Galson.

Sincerely,

SGS Galson

Lisa-Luab

Lisa Swab Laboratory Director

Enclosure(s)

ANALYTICAL REPORT

Terms and Conditions & General Disclaimers

- This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.
- Any holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Analytical Disclaimers

- Unless otherwise noted within the report, all quality control results associated with the samples were within established control limits or did not impact reported results.
- Note: The findings recorded within this report were drawn from analysis of the sample(s) provided to the laboratory by the Client (or a third party acting at the Client's direction). The laboratory does not have control over the sampling process, including but not limited to the use of field equipment and collection media, as well as the sampling duration, collection volume or any other collection parameter used by the Client. The findings herein constitute no warranty of the sample's representativeness of any sampled environment, and strictly relate to the samples as they were presented to the laboratory. For recommended sampling collection parameters, please refer to the Sampling and Analysis Guide at www.sgsgalson.com.
- Unrounded results are carried through the calculations that yield the final result and the final result is rounded to the number of significant figures appropriate to the accuracy of the analytical method. Please note that results appearing in the columns preceding the final result column may have been rounded and therefore, if carried through the calculations, may not yield an identical final result to the one reported.
- The stated LOQs for each analyte represent the demonstrated LOQ concentrations prior to correction for desorption efficiency (if applicable).
- Unless otherwise noted within the report, results have not been blank corrected for any field blank or method blank data.

<u>Accreditations</u> SGS Galson holds a variety of accreditations and recognitions. Our quality management system conforms with the requirements of ISO/IEC 17025. Where applicable, samples may also be analyzed in accordance with the requirements of ELAP, NELAC, or LELAP under one of the state accrediting bodies listed below. Current Scopes of Accreditation can be viewed at http://www.sgsgalson.com in the accreditations section of the "About" page. To determine if the analyte tested falls under our scope of accreditation, please visit our website or call Client Services at (888) 432-5227.

National/International	Accreditation/Recognition	Lab ID#	Program/Sector
AIHA-LAP, LLC - IHLAP, ELLAP, EMLAP	ISO/IEC 17025 and USEPA NLLAP	Lab ID 100324	Industrial Hygiene, Environmental Lead,
			Environmental Microbiology

State	Accreditation/Recognition	Lab ID#	Program/Sector
New York (NYSDOH)	ELAP and NELAC (TNI)	Lab ID: 11626	Air Analysis, Solid and Hazardous Waste
New Jersey (NJDEP)	NELAC (TNI)	Lab ID: NY024	Air Analysis
Louisiana (LDEQ)	LELAP	Lab ID: 04083	Air Analysis, Solid Chemical Materials
Texas	Texas Dept. of Licensing and	Lab ID: 1042	Mold Analysis Laboratory license
	Regulation		

Legend

< - Less than	mg - Milligrams	MDL - Method Detection Limit	ppb - Parts per Billion
> - Greater than	ug - Micrograms	NA - Not Applicable	ppm - Parts per Million
l - Liters	m3 - Cubic Meters	NS - Not Specified	ppbv - ppb Volume
LOQ - Limit of Quantitation	kg - Kilograms	ND - Not Detected	ppmv - ppm Volume
ft2 - Square Feet	cm2 - Square Centimeters	in2 - Square Inches	ng - Nanograms

GALSON

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057 (315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com

Client	:	Omega Environmental Services	Acc
Site	:	UCR	Log
Project No.	:	2019-3424UCR	
Date Sampled	:	13-AUG-19	Dat
Date Received	:	14-AUG-19	Rep

ount No.: 25140 in No. : L488904 e Analyzed : 14-AUG-19 - 15-AUG-19 eport ID : 1153262

Respirable Crystalline Silica (RCS): Quartz, Cristobalite, Tridymite

			Air Vol		
<u>Sample ID</u>	<u>Lab ID</u>	Analyte	<u> </u>	ug	ug/m3
Al	L488904-8	Quartz	826.5	<5.0	<6.0
		Cristobalite	826.5	<5.0	<6.0
		Tridymite	826.5	<20	<24
		RCS	826.5	<5.0	<6.0
A2	L488904-9	Quartz	700	<5.0	<7.1
		Cristobalite	700	<5.0	<7.1
		Tridymite	700	<20	<29
		RCS	700	<5.0	<7.1
A3	L488904-10	Quartz	726.8	<5.0	<6.9
		Cristobalite	726.8	<5.0	<6.9
		Tridymite	726.8	<20	<28
		RCS	726.8	<5.0	<6.9

<u>COMMENTS:</u> Please see attached lab footnote report for any applicable footnotes.

Level of quantitation	n: Q:5.0ug C:5.0ug T:20.ug	Submitted by: APG	Approved by: CMR
Analytical Method	: mod. NIOSH 7500/mod. OSHA ID-142; XRD	Date : 15-AUG-19	
Collection Media	: PVC PW 37mm	Supervisor : KRK	

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057 (315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com

Client	:	Omega Environmental Services
Site	:	UCR
Project No.	:	2019-3424UCR
Date Sampled	:	13-AUG-19
Date Received	:	14-AUG-19

Account No.: 25140 Login No. : L488904 Date Analyzed : 14-AUG-19 - 15-AUG-19 Report ID : 1153262

Respirable Crystalline Silica (RCS): Quartz, Cristobalite, Tridymite

		Air Vol		
<u>Lab ID</u>	Analyte		uq	ug/m3
L488904-11	Quartz	741	<5.0	<6.7
	Cristobalite	741	<5.0	<6.7
	Tridymite	741	<20	<27
	RCS	741	<5.0	<6.7
L488904-12	Quartz	769.5	<5.0	<6.5
	Cristobalite	769.5	<5.0	<6.5
	Tridymite	769.5	<20	<26
	RCS	769.5	<5.0	<6.5
L488904-13	Quartz	758.7	<5.0	<6.6
	Cristobalite	758.7	<5.0	<6.6
	Tridymite	758.7	<20	<26
	RCS	758.7	<5.0	<6.6
	<u>Lab ID</u> L488904-11 L488904-12 L488904-13	Lab IDAnalyteL488904-11Quartz Cristobalite Tridymite RCSL488904-12Quartz Cristobalite Tridymite RCSL488904-13Quartz Cristobalite Tridymite RCS	Lab IDAnalyteAir VolL488904-11Quartz741Cristobalite741Tridymite741RCS741L488904-12Quartz769.5Cristobalite769.5Tridymite769.5RCS769.5L488904-13Quartz758.7Cristobalite758.7Tridymite758.7RCS758.7RCS758.7	Air Vol Lab ID Analyte 1 uq L488904-11 Quartz 741 <5.0

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Level of quantitation	1: Q:5.0ug C:5.0ug T:20.ug	Submitted by: APG	Approved by: CMR
Analytical Method	: mod. NIOSH 7500/mod. OSHA ID-142; XRD	Date : 15-AUG-19	
Collection Media	: PVC PW 37mm	Supervisor : KRK	

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057 (315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com

Client	:	Omega Environmental Services
Site	:	UCR
Project No.	:	2019-3424UCR
Date Sampled	:	13-AUG-19
Date Received	:	14-AUG-19

Account No.: 25140 Login No. : L488904 Date Analyzed : 14-AUG-19 - 15-AUG-19 Report ID : 1153262

Respirable Crystalline Silica (RCS): Quartz, Cristobalite, Tridymite

			Air Vol		
<u>Sample ID</u>	<u>Lab ID</u>	Analyte	1	ug	ug/m3
А7	L488904-14	Quartz	781.2	<5.0	<6.4
		Cristobalite	781.2	<5.0	<6.4
		Tridymite	781.2	<20	<26
		RCS	781.2	<5.0	<6.4
A8	L488904-15	Quartz	737.1	<5.0	<6.8
		Cristobalite	737.1	<5.0	<6.8
		Tridymite	737.1	<20	<27
		RCS	737.1	<5.0	<6.8
А9	L488904-16	Quartz	734.4	<5.0	<6.8
		Cristobalite	734.4	<5.0	<6.8
		Tridymite	734.4	<20	<27
		RCS	734.4	<5.0	<6.8

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Level of quantitation	1: Q:5.0ug C:5.0ug T:20.ug	Submitted by: APG	Approved by: CMR
Analytical Method	: mod. NIOSH 7500/mod. OSHA ID-142; XRD	Date : 15-AUG-19	
Collection Media	: PVC PW 37mm	Supervisor : KRK	

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057 (315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com

Client	:	Omega Environmental Services
Site	:	UCR
Project No.	:	2019-3424UCR
Date Sampled	:	13-AUG-19
Date Received	:	14-AUG-19

Account No.: 25140 Login No. : L488904 Date Analyzed : 14-AUG-19 - 15-AUG-19 Report ID : 1153262

Respirable Crystalline Silica (RCS): Quartz, Cristobalite, Tridymite

			Air Vol		
<u>Sample ID</u>	<u>Lab ID</u>	Analyte	1	uq	ug/m3
A10-QAQC	L488904-17	Quartz	NA	<5.0	NA
		Cristobalite	NA	<5.0	NA
		Tridymite	NA	<20	NA
		RCS	NA	<5.0	NA

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Level of quantitation	n: Q:5.0ug C:5.0ug T:20.ug	Submitted by: APG	Approved by: CMR
Analytical Method	: mod. NIOSH 7500/mod. OSHA ID-142; XRD	Date : 15-AUG-19	
Collection Media	: PVC PW 37mm	Supervisor : KRK	

LABORATORY ANALYSIS REPORT

6601 Kirkville Road East Syracuse, NY 13057 (315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com

Client	:	Omega Environmental Services	Account No.: 25140	
Site	:	UCR	Login No. : L488904	
Project No.	:	2019-3424UCR		
Date Sampled	:	13-AUG-19	Date Analyzed : 14-AUG	-19
Date Received	:	14-AUG-19	Report ID : 115326	3

Silica: Quartz, Cristobalite & Tridymite

Sample ID	Lab ID	Area 2	Quartz mg	Quartz mg/cm2	Cristo mg	Cristo mg/cm2	Tridym mg	Tridym mg/cm2
Wl	L488904-1	258	0.25	0.00098	<0.029	<0.00011	<0.020	<0.000078
W2	L488904-2	100	0.27	0.0027	<0.036	<0.00036	<0.020	<0.00020
W3	L488904-3	100	0.064	0.00064	<0.0080	<0.000080	<0.020	<0.00020
W4	L488904-4	100	0.011	0.00011	<0.0050	<0.000050	<0.020	<0.00020
W5	L488904-5	413	0.11	0.00027	<0.018	<0.000044	<0.020	<0.000048
W6	L488904-6	100	0.068	0.00068	<0.012	<0.00012	<0.020	<0.00020
W7-QAQC	L488904-7	NA	<0.0050	NA	<0.0050	NA	<0.020	NA

<u>COMMENTS:</u> Please see attached lab footnote report for any applicable footnotes.

Level of Quantitati	on: Q:0.0050mg; C:0.0050mg; T:0.020mg	Submitted by: APG	Approved by: CMR
Analytical Method	: mod. NIOSH 7500/mod. OSHA ID-142; XRD	Date : 15-AUG-19	
Collection Media	: PVC Wipe	Supervisor : KRK	

LABORATORY FOOTNOTE REPORT

	Client Name : Omega Environmental Site : UCR Project No. : 2019-3424UCR	Services
6601 Kirkville Road East Syracuse, NY 13057 (315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com	Date Sampled : 13-AUG-19 Date Received: 14-AUG-19 Date Analyzed: 14-AUG-19 - 15-AUG-1	Account No.: 25140 Login No. : L488904 19

L488904 (Report ID: 1153262):

The reported RCS value is based on recoveries of silica polymorphs (Quartz, Cristobalite, and/or Tridymite) greater than the reporting level. The presence of silica below the reporting level cannot be ruled out. When all polymorph results are below the reporting level, RCS defaults to the lowest polymorph concentration. The calibration standard used for Tridymite analysis is not NIST traceable; however, when Tridymite is detected above the reporting level, it is included in the RCS calculation. SOPs: ix-xrdreview(15), ix-xrdashprep(32), ix-calibrate(13), ix-xrdstdprep(29)

L488904-7-17 (Report ID: 1153262):

Secondary angle was used for Tridymite mass determination.

L488904 (Report ID: 1153262):

Accuracy and mean recovery data presented below is based on a 95% confidence interval (k=2). The estimated accuracy applies to the media, technology, and SOP referenced in this report and does not account for the uncertainty associated with the sampling process. The accuracy is based solely on spike recovery data from internal quality control samples. Where N/A appears below, insufficient data is available to provide statistical accuracy and mean recovery values for the associated analyte.

Parameter	Accuracy	Mean Recovery	
Gristabalita	. / 12 0%	04.4%	
Ouartz	+/-12.9%	94.4%	
Tridymite	+/-21.4%	101%	

L488904 (Report ID: 1153263):

SOPs: ix-xrdreview(15), ix-xrdashprep(32), ix-calibrate(13), ix-xrdstdprep(29)

L488904-1-3,5-6 (Report ID: 1153263):

Secondary angle was used for Quartz mass determination.

L488904-4,7 (Report ID: 1153263):

Secondary angle was used for Tridymite mass determination.

L488904 (Report ID: 1153263):

We perform a quantitative secondary angle confirmation on all Quartz results greater than 0.025 mg. Secondary angle quantitative confirmation is not possible below 0.025 mg.

L488904-1-3,5-6 (Report ID: 1153263):

Elevated Cristobalite reporting limit due to matrix interference.

L488904-5 (Report ID: 1153263):

During sample preparation for Silica analysis, larger particles in the sample did not break apart to form a uniform deposit. The impact on reported Silica results is unknown.

L488904-1-3,5-6 (Report ID: 1153263):

The Primary Tridymite blank spike recovery was outside the control limits of 72.0% to 121% at 71.0%. Where possible,

LABORATORY FOOTNOTE REPORT

	Client Name : Site : Project No. :	Omega Environmental Ser UCR 2019-3424UCR	vices
6601 Kirkville Road			
East Syracuse, NY 13057	Date Sampled :	13-AUG-19	Account No.: 25140
(315) 432-5227	Date Received:	14-AUG-19	Login No. : L488904
FAX: (315) 437-0571	Date Analyzed:	14-AUG-19 - 15-AUG-19	
www.sgsgalson.com			

L488904-1-3,5-6 (Report ID: 1153263):

control limits are statistically generated in-house. In the absence of statistical limits, guidance default limits of 75 125% are used. The Primary Tridymite blank spike duplicate recovery was within control limits.

110571540118890 e:08/14/19 ipper:UPS itials:MAK ep:UNKNOWN MS SQD4	GALSON	CHAIN OF	CUSTODY		1229
Turn Around Time (TAT): (surcharge) □ Standard 0% □ 4 Business Days 35% □ 3 Business Days 50% □ 2 Business Days 50% □ 2 Business Days 75% ▲ Next Day by 6pm 100% · □ Next Day by Noon 150% □ Same Day 200% ☑ Samples submitted using the FreePumpLoan™ Program Samples submitted using the FreeSamplingBadges™ Program	You may edit and complete this COC electron Client Acct No.: Report To : Mr 25140 Company Name : On Address 1 : 45 Original Prep No.: Address 2 : PSY540113 City, State Zip : Ne Phone No. : 94 CS Rep: Cell No. : 94 TLANCASTER Email reports to : Ku Online COC No.: Email EDD to : Ku 187440 Comments :	nically by logging in to your Client Po r. Kumar Gunaratna mega Environmental Service 570 Campus Dr., Ste. 30 ewport Beach, CA 92660 49 - 252 - 2145 49 - 230 - 4440 Imar@omegaenv.com	rtal account at https://portal.galsonlabs./ Invoice To s Company Name Address 1 Address 2 City, State Zip Phone No. Email Address Ports of Mong CUV or marketts P.O. No. Payment info.	Accounts Payable Omega Environmental Serv 4570 Campus Dr., Ste. 30 Newport Beach, CA 92660 949 - 252 - 2145 apdept@omegaenv.com Uull call SGS Galson to provide Card on File (enter the last five d	ices credit card info ligits on the line below)
Comments : SIUCA DUST Site Name : UCA	CLEANUP - POST Project: 19-34240CP	ASSESS. Sampled BE: C- GUVAVA	State Sample CA List description	ed : Please indicate which OEL(s) (OSHA PEL ACGIH TLV IAQ : Specify Limit(s) n of industry or Process/interferences (this data will be used for : MSHA Cal OSHA Other : Specify Other present in sampling area :
Sample ID * (Maximum of 20 Characters)	te Sampled * Collection Medium	Sample Volume Li Sample Time Min Sample Area * in², cr	Analysis Requested	Method Reference ^	Hexavalent Chromium Process (e.g., welding, plating, painting, etc.)
WT 2	8 13 19 Cassette 8 13 19 Cassette	100 C	M - M -	NIOSH 7500	rost Cucand p
A If the method(s) indicated on the C Chain of Custody Relinquished By : Relinquished By : Vu N	COC are not our routine/preferred method(s), w Print Name / Fignature guyen You must fill i Samples rece	Date Time 13 19 Receive 13 19 Receive 14 16 0° 15 16 0° 16 16 0° 17 16 0° 18 16 0° 19 16 0° 19 16 0° 19 16 0° 10 16 0° 11 16 0° 11 16 0° 12 16 0° 13 17 16 14 16 0° 15 16 0° 16 16 0° 17 16 0° 18 16 0° 19 16 0° 10 16 0° 10 16 0° 10 16 0° 10 16 0° 10 16 0° 10 16 0° 10 16 0° 10 16 0° 10 16 0° 10 16 0° 10 <td< td=""><td>I methods. If this is not acceptable, chec Print Name ved By : VII NOUVEN ved By : Michelle Rause ich you are submitting. next day's business.</td><td>k here to have us contact you. 2 / Signature Confine COC No. : 1874 Prep No. : PSY Account No. : 2514 Draft : 8/2/2</td><td>Date Time 13/19 14 45 44/4 0513 440 540113 10 2019 5:18:40 PM</td></td<>	I methods. If this is not acceptable, chec Print Name ved By : VII NOUVEN ved By : Michelle Rause ich you are submitting. next day's business.	k here to have us contact you. 2 / Signature Confine COC No. : 1874 Prep No. : PSY Account No. : 2514 Draft : 8/2/2	Date Time 13/19 14 45 44/4 0513 440 540113 10 2019 5:18:40 PM
All sen Page : 1 / 4	vices are rendered in accordance with the appli	icable SGS General Conditions of Sen SGS North America,	vice accessible via: <u>http://www.sgs.com/</u> E. Syracuse, NY 13057, USA t+1 888 4:	en/Terms-and-Conditions.aspx 32 5227 +1 315 432 5227 www.galso	nlabs.com www.sgs.cor

.*

.

Page 10 of 13 Report Reference:1 Generated:15-AUG-19-14:21

٠

GALSON CHAIN OF CUSTODY

ſ	Sample ID * (Maximum of 20 Characters)	Date Sampled *	Collection Medium	Sample Volume Sample Time Sample Area *	Liters Minutes in², cm², ft² *	Analysis Requested	Method Reference ^	Hexavalent Chr Process (e.g., v plating, paintir
Γ	W3	8 13 19	5um PVC Filter no Cassette	00	Cm ²	SIUCA QCT	NIOSH 7500	Prst cla
∦	104)	5um PVC Filter no Cassette	100	CUNZ)	NIOSH 7500	
ſ	WS		5um PVC Filter no Cassette	413	Can 2		NIOSH 7500	
A	W 6		5um PVC Filter no Cassette	100	Cure		NIOSH 7500	
	w7-QAQ	V	5um PVC Filter no Cassette			V	NIOSH 7500	V
			<u>5um PVC Filter no</u> Cassette				NTOSH 7500	
ſ			5um PVC Filter no Cassette				NIOSH 7500	
ſ			5um PVC Filter no Cassette				NIOSH 7500	
			3pc 37mm PW PVC			Silica, crystalline quartz, cristobalite, & tridymite (with respirable dust)	mod. NIOSH 0600/7500/mod. OSHA ID-142; Grav./XRD	
	^ If the method(s) indicated on	the COC are not our	routine/oreferred method(s), we v	will substitute our routine	/preferred methods.	If this is not acceptable, check here to) have us contact you.	L
. -	Chain of Custody Relinquished By :	Print Name / Si	Prance AAA 8	Pate Time	Received By :	Print Name / Signa	tore home Al	Date T 2/19-14
	Relinquished By :] 💓 👔 🗍	guyen -	* You must fill in t Samples receiv	these columns for any sa ed after 3pm will be cons	mples which you are	submitting.	On ne COC No. : 1874 Prep No. : PSY5 Account No. : 2514 Draft : 8/2/20	40113

SGS North 6601 Kirkville Road E. Syracuse, NY 13057, USA t+1 888 432 5227 |+1 315 432 5227 www.galsonlabs.com | www.sgs.com America,

Page 11 of 13 Report Reference:1 Generated:15-AUG-19 14:21

GALSON CHAIN OF CUSTODY

Comments:	1-10 in	ammer inter us	ADA EDe	or dutic			
Sample ID * (Maximum of 20 Characters)	Date Sampled *	Collection Medium	Sample Volume Sample Time Sample Area *	Liters Minutes in², cm², ft² *	Analysis Requested	Method Reference ^	Hexavalent Chromium Process (e.g., welding, plating, painting, etc.)
AI	8/13/19	3pc 37mm PW PVC	f26.5	Liters	Silica, crystalline quartz, cristobalite, & tridymite (with respirable-dust)	mod. NIOSH 2000/7500/mod. OSHA ID-142; Grav./XRD	Post Cleanus
42	\int	3pc 37mm PW PVC	700.0		Silica, crystalline quartz, cristobalite, & tridymite (with r gspirable dust)	mod. NIOSH 0470 /7500/mod. OSHA ID-142; Grav./XRD	
A3		3pc 37mm PW PVC	726.8		Silica, crystalline quartz, cristobalite, & tridymite (with respirable dust)	mod. NIOSH .0600/7500/mod. OSHA ID-142; Grav./XRD	
AY		3pc 37mm PW PVC	741.0		Silica, crystalline quartz, cristobalite, & tridymite (with <u>respirable dust)</u>	mod. NIOSH 2699 /7500/mod. OSHA ID-142; Grav./XRD	
As		3pc 37mm PW PVC	769.5		Silica, crystalline quartz, cristobalite, & tridymite (with respirable dust)	mod. NIOSH 9000/7500/mod. OSHA ID-142; Grav./XRD	
A6	1	3pc 37mm PW PVC	758.7	V	Silica, crystalline quartz, cristobalita & tridymite (with r <mark>gopirable dus</mark> t)	mod. NIOSH 0 <u>600/</u> 7500/mod. OSHA ID-142; Grav./XRD	V
A If the method(s) indicated on the COC are not our routine/preferred method(s), we will substitute our routine/preferred methods. If this is not acceptable, check here to have us contact you.							
Chain of Custody	Print Name 7 S		ter Time	Descional Dec	Print Name / Signat	ture	Date Time
Relinquished By :		A Man All	2 1 1 1 m	Received By :	vu inguyen	Mining	Ma Caiz
	guycn	* You must fill in the Samples received	se columns for any sar	nples which you are a dered as next day's t	submitting.	Orgine COC No. : 18744 Prép No. : PSY5 Account No. : 25140 Draft : 8/2/20	19 5:18:40 PM
	I services are render	ed in accordance with the applicable	SGS General Conditio	ns of Service accessi	ble via: <u>http://www.sgs.com/en/Term</u>	s-eng-Conditions.aspx	

SGS North | 6601 Kirkville Road E. Syracuse, NY 13057, USA t +1 888 432 5227 | +1 315 432 5227 www.galsonlabs.com | www.sgs.com America,

CHAIN OF CUSTODY

Comments :			-				
Sample ID * (Maximum of 20 Characters)	Date Sampled *	Collection Medium	Sample Volume Sample Time Sample Area *	Liters Minutes in², cm², ft² *	Analysis Requested	Method Reference ^	Hexavalent Chromium Process (e.g., welding, plating, painting, etc.)
A7	8/13/19	3pc 37mm PW PVC	781.2	Liteus	Silica, crystalline quartz, cristobalite, & tridymite (with respirable dust)	mod. NIOSH	
A8		3pc 37mm PW PVC	737.1		Silica, crystalline quartz, cristobalite, & tridymite (with respirable dust)	mod. NIOSH 9600 /7500/mod. OSHA ID-142; Grav./XRD	
Aq		3pc 37mm PW PVC	734-4		Silica, crystalline quartz, cristobalite, & tridymite (with respirable dust)	mod. NIOSH -0£00 /7500/mod. OSHA ID-142; Grav./XRD	
A10-Q4QC	Ą	3pc 37mm PW PVC		Ð	Silica, crystalline quartz, cristobalite, & tridymite (with respirable dust)	mod. NIOSH 9 600/ 7500/mod. OSHA ID-142; Grav./XRD	
If the method(s) indicated on	the COC are not our	routine/preferred method(s), we w	Il substitute our routine	/preferred methods. I	f this is not acceptable, check here to	have us contact you.	
Chain of Custody Relinquished By : Relinquished By : VII	Print Name / S	* You must fill in th	Date Time 3 [7] / 3 / 5 & b ese columns for any sai	Received By : Received By : mples which you are	Print Name / Signa Vu Nguyen Michelio Krauso submitting.	* Onling COC No. : 18744 Prep No. : PSY5	Date Time 3/3/1445 4/9/05/3 0 10113
AI	services are render	ed in accordance with the applicabl	e SGS General Conditio	ons of Service accessi	ble via: http://www.sgs.com/en/Terny	Account No. : 25140 Draft : 8/2/20 s-and-Conditions.aspx	19 5:18:40 PM

Page 13 of 13 Report Reference:1 Generated:15-AUG-19 14:21

Member of the SGS Group (SGS SA)

APPENDIX 5

TSI 9306-04 Aerotrak Instrument Calibration Report

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

1340 Reynolds Avenue, Suite 108 Irvine, CA 92614 Toll-free: 888-620-7463

Pine Environmental Services, Inc.

Instrument ID	35974			
Description	TSI 9306-04 Aerotrak			
Calibrated	8/12/2019 11:22:34AM		4	
Manufacturer	Tsi	S	tate Certified	· · · · · · · · · · · · · · · · · · ·
Model Number	9306-04		Status Pa	iss
Serial Number/ Lot	93061642012		Temp °C 24	
Number				
Location	California		Humidity % 45	5
Department				
Group Group Nat	Calibratio	on Specifications		
Test Performed: Yes	As Found Result: Pass	А. А.	s Left Result: Pa	ss
<u>Test Instruments Used D</u> <u>Test Standard ID</u> <u>Descrip</u>	uring the Calibration tion <u>Manufacturer</u>	Model Number	<u>Serial Number /</u> Lot Number	(As Of Cal Entry Date) <u>Next Cal Date /</u> Last Cal Date/ Expiration Date Opened Date

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Brandon Marley

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

CERTIFICATE OF CALIBRATION

TSI Incorporated, 500 Cardigan Road, Shoreview, MN 55126 USA Tel: 1-800-874-2811 1-651-490-2811 Fax: 1-651-490-3824 http://www.tsi.com

ENVIRONMENT CONDITION			MODEL	9306-04	
TEMPERATURE	TURE 73.9 (23.3) °F (°C)			00004040040	
RELATIVE HUMIDITY	26	%RH	SERIAL NUMBER	93061642012	
BAROMETRIC PRESSURE	28.95 (980.4)	inHg (hPa)	CUSTOMER INST ID		

As Left

IN TOLERANCE

AEROTRAK CALIBRATION KIT							
MEASUREMENT VARIABLE	SYSTEM ID	DATE LAST CALIBRATED	CALIBRATION DUE DATE				
FLOW METER	E005519	8/28/2018	2/28/2019				
7201-02F	E005520	8/15/2018	2/20/2019				

PARTICLE STANDARDS						
PARTICLE Size	STANDARD UNCERTAINTY	STANDARD DEVIATION	LOT NO.	EXPIRATION DATE		
0.303 µm	0.003 µm	0.0047 µm	196947	4/30/2021		
0.508 µm	0.004 µm	0.0085 µm	185892	6/30/2020		
0.994 µm	0.0075 µm	0.010 µm	200992	8/31/2021		
2.92 µm	0.015 µm	0.03 µm	181443	2/28/2020		
5.020 µm	0.015 µm	0.06 µm	179268	1/31/2020		
9.850 µm	0.03 µm	0.13 µm	196944	4/30/2021		

TSI does hereby certify that the calibration performed on the above described instrument meets the requirements of ISO 21501-4. TSI does hereby certify that the above described instrument conforms to the original manufacturer's specification (not applicable to As Found data) and has been calibrated using standards whose accuracies are traceable to the United States National Institute of Standards and Technology (NIST) or has been verified with respect to instrumentation whose accuracy is traceable to NIST, or is derived from accepted values of physical constants. TSI is registered to ISO-9001:2015.

CALIBRATED

January 28, 2019

DATE

Model 9306-04 SN 93061642012 Monday, January 28, 2019 12:08:57 PM

Page 1 of 2

CERTIFICATE OF CALIBRATION

ww.eww.eww.eww.

TSI Incorporated, 500 Cardigan Road, Shoreview, MN 55126 USA Tel: 1-800-874-2811 1-651-490-2811 Fax: 1-651-490-3824 http://www.tsi.com

Size	SIZE CALIBRATION AND VERIFICATION OF SIZE SETTING			
NOMINAL PARTICLE SIZE GAIN STAGE DIGITAL CUTPOINT EXPANDED UNCERTAINTY				
0.3 μm	A	30	4.1%	
0.5 µm	A	330	3.9%	
1 µm	В	6	* 3.9%	
3 µm	B	55	3.7%	
5 µm	В	160	3.6%	
10 µm	В	525	3.6%	

COUNTING EFFICIENCY				
PARTICLE SIZE	ACTUAL	ALLOWABLE RANGE	PASS/FAIL	
0.3 µm	54%	50% ± 20%	Pass	
0.5 µm	93%	100% ± 10%	Pass	

SIZE RESOLUTION				
PARTICLE SIZE	MEASURED	ALLOWABLE RANGE	PASS/FAIL	
0.5 µm	4.6%	≤15%	Pass	

FALSE COUNT RATE						
Sample Time (min)	SAMPLED (L)	MEASURED COUNTS (#)	Concentration (#/M ³)	95% UCL (#/M ³)	ALLOWABLE RANGE (#/M ³)	PASS/FAIL
30	85	0	0.00	35,3	≤70.7	Pass

SAMPLING FLOW RATE (L/MIN)				
NOMINAL	ACTUAL	ERROR	ALLOWABLE RANGE	PASS/FAIL
2.83	2.83	0.0 %	± 5%	Pass

	SAMPLING TIME †	
MEASURED	ALLOWABLE RANGE	PASS/FAIL
<±0.1%	± 1%	Pass

MAXIMUM PARTICLE CONCENTRATION † 210000000 #/m³ @10% Coincidence Loss

Response Rate †			
	MEASURED	ALLOWABLE RANGE	PASS/FAIL
	0.08%	≤ 0.5%	Pass

† Tested and verified during product development

CALIBRATION INTERVAL		
CALIBRATION DATE	EXPIRATION DATE	
January 28, 2019	January 28, 2020	

Model 9306-04 SN 93061642012 Monday, January 28, 2019 12:08:57 PM

Page 2 of 2