

Limited Hazardous Material Sampling Assessment

Pierce Hall- First Floor South Hallway University of California - Riverside Riverside, California

Omega Project #2019-3488UCR October 9, 2019

Prepared For:

Prepared By:

Sheila Hedayati University of California - Riverside 395 West Linden Street Riverside, California 92507 Richard Wade, PhD., MPH. Omega Environmental Services, Inc., 4570 Campus Drive - Suite 30 Newport Beach, California 92660

Richard Wade, PhD., MPH.

Principal Scientist

Steve Rosas, CAC.

Principal and Senior Project Manager

TABLE OF CONTENTS

1.	INTRODUCTION	1
2.	EXECUTIVE SUMMARY	1
3.	SAMPLING METHODOLOGY	3
4.	SAMPLE LOCATIONS AND RESULTS	7
5.	CONCLUSIONS AND RECOMMENDATIONS	14
6.	LIMITATIONS	14

APPENDICES

Appendix 1	Omega Field Notes & Field Map
APPENDIX 2	LABORATORY ANALYTICAL RESULTS AND CHAIN OF CUSTODIES
APPENDIX 3	TSI 9306-04 Aerotrak Instrument Calibration Report
Appendix 4	TOTAL PARTICULATES AND HEALTH EFFECTS RESEARCH PAPER

1. INTRODUCTION

On September 20th, 2019, Tanya Seneviratne, Industrial Hygienist with Omega Environmental Services, Inc. (Omega) conducted a limited hazardous material sampling assessment at Pierce Hall, University of California – Riverside (UCR) located in Riverside, California. Ms. Rebecca Lally, Certified Industrial Hygienist with Environmental Health and Safety, UCR (the Client) provided background information and arranged for site access for the assessment.

2. EXECUTIVE SUMMARY

The Client retained Omega to conduct a bioaerosol study of the south hallway in Pierce Hall. Ceiling substrate was recently removed in the subject hallway. Visible stain impacted Heating Ventilation and Air Conditioning (HVAC) fiberglass duct insulation (insulation) was noted in the sub-ceiling spaces. The study focused on suspect mold growth on the stained insulation material and its potential impact on the occupants using the subject hallway.

2.1 Omega's scope of work was limited to the following:

- Collect indoor air, surface, and bulk samples for viable and non-viable fungi; collect outdoor air samples for viable and non-viable fungi; and collect direct read measurements for aerosol particulate matter with diameters 3 μ m (micrometers), 5 μ m, and 10 μ m (PM₃, PM₅, and PM₁₀) at indoor and outdoor locations using a factory calibrated laser particle counter (LPC); and
- Develop a written report discussing the findings, conclusions and recommendations.
- 2.2 Visual Findings:

The findings included sporadic staining and accumulated dust on the insulation in the sub-ceiling spaces along the south hallway. Infrared thermal images indicated temperature differentials suggesting retained moisture on a section of stained insulation located at the east end of the hallway near Room #1134. Moisture meter measurements collected confirmed the presence of retained moisture in the insulation.

2.3 Laboratory analytical results:

- Non-viable fungi (air): Indoor bioaerosol concentrations were comparable to those concentrations found in the outdoors at the time of sampling.
- Non-viable other particulates (air): Indoor other particulate concentrations were comparable to those concentrations found in the outdoors at the time of sampling. However, epithelial (skin) cell concentrations found indoors were elevated when compared to the outdoor concentrations.

- Non-viable particulates (surface tape): Fungal spores were not detected in the two indoor samples collected. Other particulates including cellulosic fibers (fabric/paper), synthetic fibers, fiberglass, soil minerals, carbonates (gypsum like), and fire residue (soot and char) were identified in both surface samples.
- Viable fungi (air): Colony forming units (CFUs) found indoors (4 samples) were unremarkable and comparable to those CFUs found outdoors (1 sample) at the time of sampling.
- Viable fungi (bulk): Omega collected 2 fibrous duct insulation material samples during the assessment. Sample Number 1 was collected at the east hallway near Room #1134 (wet area) and indicated the presence of seventeen (17) non-sporulating fungal CFUs. Fungi were not detected on duct insulation sample Number 2, which was collected at the west end of the hallway near Room #1104 (dry area).
- Direct read LPC measurements (air): Data was collected both at the beginning [approximately (~) 9.15 am] and at the end (~ 12.30 pm) of the assessment. The measurements indicated that the average indoor PM_3 , PM_5 and PM_{10} concentrations were less than the outdoor concentrations.

The building HVAC system design includes the return-air via an open plenum in the subject hallway where the stain impacted duct insulation is located. The laboratory dust analytical results indicated the presence of inorganic and mineral constituents which may have contributed to the discoloration of the insulation material. The findings showed the presence of particulates generally composed of amorphous sands (quartz-like, clays, and soil minerals) and fire residue (soot and char). These findings are considered typical for older buildings located in semiarid climates with exposure to high winds and historical wildfires.

The laboratory analytical findings confirm that there is no evidence of significant viable and non-viable fungal growth on the stain impacted insulation along the south hallway.

Based on these findings, it is Omega's professional opinion that the stain impacted insulation has no adverse health effects from mold growth on the building occupants utilizing the hallway.

The elevated epithelial cell concentrations noted are considered acceptable in a well-trafficked hallway located within an occupied building.

Moisture intrusion issues impacting the insulation material were noted at the east hallway area near Room #1134. Omega recommends that the moisture-impacted insulation material be removed and discarded, and that the source of moisture intrusion be identified and repaired as soon as possible. Additional recommendations are not warranted at this time.

The Appendices present Omega field notes, field map indicating the sample locations, laboratory analytical results with Chain of Custodies, laser particle counter TSI 9306-04 Aerotrak Instrument Calibration Reports, and Omega research paper on health effects of exposure to total particulates.

3. <u>SAMPLING METHODOLOGY</u>

Prior to collection of samples, a visual and moisture assessment was conducted along the sub-ceiling spaces in the south hallway of Pierce Hall. The assessment conducted was to determine: (a) stain impacted areas with retained moisture and (b) stain impacted areas without retained moisture.

3.1 Visual Inspection

Visual inspection focuses on observing existing conditions. This inspection consists of a surface screening for the following:

- Visible excess moisture
- Staining/suspect mold growth
- Discoloration
- Texture changes
- Material dimensional changes
- Decay
- Structural dislocations

Note: The absence of visible deficiencies does not exclude the presence of excess moisture within the envelope or on a surface.

3.2 Moisture Assessment

• An IR camera (FLIR E6 with Serial Number 63916555) was utilized to observe temperature differentials on the building substrate. Temperature distribution on a surface causes the underlying geometry of the substructures to stand out. In addition, the sensitivity of the camera causes water-saturated or questionable materials to stand out (i.e. missing insulation, thermal bridges, and air leakage). The camera provides a non-destructive method for identifying probable leakage areas and focuses investigations on the building envelope and latent water leaks that could lead to microbial growth. The IR camera also permits the option of obtaining colorized images in printable formats.

 A Delmhorst moisture meter (Model BD-2100 with Serial Number 53089) was used in conjunction with the IR thermography to determine if the observed temperature differentials were in fact caused by moisture intrusion. Table 1 below presents the Delmhorst BD-2100 manufacturer recommended testing criteria:

Measurement Scale #/ Substrate material	Moisture content % Considered dry	Moisture content % Considered borderline	Moisture content % Considered elevated (wet)		
#3/Drywall	< 0.5	$\geq 0.5 < 1.0$	≥ 0.9		
#3/Fiberglass Insulation ^(b)	0.1 - 0.4	Not determined	Not determined		
#1/Wood or particle board	< 5.0	≥15.0 < 17.0	≥ 17.0		

Table 1 - Moisture Testing Criteria^(a)

^(a)Moisture testing criteria is based on the Delmhorst Instrument Co. user manual for moisture meter Model BD-2100; < - Less than; \geq - Greater than or equal.

^(b)Omega utilized the #3/Drywall scale setting of the moisture meter to collect moisture measurements in the fiberglass duct insulation. Initially, baseline measurements were collected from fiberglass insulation material found on ducting located near the east entrance door to the Pierce Hall south lobby area (control area). Measurements collected in the control area were between 0.1% and 0.4% and were considered as the baseline measurements for comparison purposes.

3.3 Sample Types

During the subject assessment, Omega collected five types of samples:

- Airborne samples to evaluate non-viable airborne fungi and other background particulates,
- Surface tape-lift samples from sub-ceiling duct insulation to quantitatively and qualitatively examine the presence of fungi and total dust,
- Culturable airborne samples for the presence of viable fungi,
- Culturable surface bulk samples of sub-ceiling duct insulation material for the presence of viable fungi, and
- Real time indoor and outdoor aerosol particulates (PM₃, PM₅, and PM₁₀).

3.3.1 Non-viable aerosol sampling

Sampling methods and the laboratory analytical results evaluation criteria was based on acceptable industry standards and reference to "Recognition, Evaluation, and Control of Indoor Mold", American Industrial Hygiene Association 2008, edited by Prezant, Weeks, and Miller.

Comparison of types and concentrations of bioaerosols found indoors to those found outdoors is a key aspect of an environmental assessment for molds. The total counts for each spore type and the overall totals for the indoor samples should be less when compared to the outdoor samples. The rank order (biodiversity) for each spore type in each indoor sample should be comparable to the rank order for the corresponding types in the outdoor samples.

Non-viable aerosol particulate samples were collected using laboratory supplied single use spore trap samplers (Zefon Air-O-Cell cassettes) and a pump (Zefon Bio-Pump). At each indoor location along the south hall, two (2) samples were collected - one at a ceiling height with a distance of \sim one-foot (1') from the sub-ceiling impacted duct insulation, and one at adult breathing zone at $\sim 5'$ from the finished floor level, also at the same location. The exterior sample was taken at a 5' height from the floor.

Prior to sampling, the pump was calibrated to sample at a flow rate of 15 LPM and programmed to run for five minutes, yielding a total volume of 75 liters per sample. An unused sampling cassette was included into the non-viable airborne sample mixture to represent the media batch and for Quality Assurance and Quality Control (QAQC) purposes. Samples were issued unique identifications to represent the sampling locations, documented on a laboratory provided chain of custody (COC) and submitted to Eurofins EMLab P&K Laboratory¹ (EML), for Direct Microscopy Examination (DME) analysis.

3.3.2 Surface Tape-lift sampling

At each indoor location along the south hall, four (4) tape lift samples were collected from the surface of the sub-ceiling stain impacted duct insulation. Two (2) tape-lift samples were collected next to each other at each sample location using laboratory issued test slides (Zefon Bio Tape). An unused sample media was included into the tape-lift sample mixture to represent the media batch and for Quality Assurance and Quality Control (QAQC) purposes. Samples were issued unique identifications to represent the sampling locations, documented on a COC and submitted to Environmental Analysis Associates, Inc²., (EAA) for DME analysis

¹ Eurofins EMLab P&K Laboratory is an American Industrial Hygiene Association (AIHA) accredited microbiology laboratory located at 17461 Derian Avenue, Suite 100 in Irvine, California.

² Environmental Analysis Associates, Inc., AIHA accredited microbiology laboratory located at 306 5th Street, Suite 2A in Bay City, MI 48708.

3.3.3 Culturable airborne sampling

Culturable bioaerosol samples were collected using laboratory supplied Biocassete[®] sampling devices (Eurofins EMLab P&K) and a high-volume pump. Each disposable Biocassete[®] comes pre-filled with malt extract agar (MEA) which is designed to capture bioactive airborne fungi. At each indoor sample location along the south hall, two (2) samples were collected; (a) one sample at a ceiling height at a distance of ~ 1' from the sub-ceiling impacted duct insulation, and (b) one sample at adult breathing zone at ~ 5' from the floor level, also at the same location. The exterior sample was collected at the adult breathing zone.

Prior to sampling, a high-volume Air-Gast pump was calibrated to 28.3 liters per minute (LPM) using a factory calibrated DryCal DC-Lite Primary Flow Meter connected to a Biocassete[®] media. A Biocassete[®] was used to collect each sample for two minutes (volume of 56.6 liters). An unused Biocassete[®] media was included into the sample mixture to represent the media batch and for QA/QC purposes. Samples were issued unique identifications to represent the sampling locations, documented on a laboratory provided COC and submitted to EML, for culturable air fungi analysis.

3.3.4 Bulk sampling

At each indoor location along the south hall, one (1) bulk sample was collected from the sub-ceiling stain impacted duct insulation material. $A \sim 1$ square inch piece of insulation was cut using cleaned and sterile hand tools and was placed in a plastic baggie for laboratory analysis. Samples were issued unique identifications to represent the sampling locations, documented on a laboratory provided COC and submitted to EML, for 1-media surface fungi culture analysis.

3.3.5 Aerosol dust particulate sampling

To further characterize the real time concentrations of aerosol particulates in the subject areas, direct read particulate spot measurements were collected for PM_3 , PM_5 , and PM_{10} using a factory calibrated handheld TSI Aerotrak (Serial Number 93061629015) with laser particle counter (LPC). The LPC was programmed to collect a two (2) minute sample at each location. The samples were collected with the LPC held at arms-length at a height of ~ 5' from floor level to mimic the adult breathing zone.

Particulate spot measurements were collected twice; (a) at the beginning and (b) at the end of the assessment. Direct read measurements were collected at three (3) indoor locations (south hallway near room 1134, room 1104, and the south lobby area) and two (2) outdoor locations (west entrance and east courtyard). Omega also measured the temperature and relative humidity at the five sample locations. Measurements were scribed onto a field sample data sheet.

4. SAMPLE LOCATIONS AND RESULTS

Visible sporadic black/brown staining was noted on insulation material located throughout the south hallway sub ceiling space. Two indoor sample locations were determined based on the presence of retained moisture and dry conditions on stain impacted insulation material.

Infrared (IR) thermal differentials were noted on insulation material located at the east end of the hallway at Room 1134. Moisture measurements collected at this location confirmed retained moisture (2.9% - 5.1%) in the insulation. The second sample location was at the west end of the hallway at Room 1104. IR thermal differentials were not noted at the second location. Moisture meter measurements were considered dry (0.3%-0.4%).

During the assessment, Omega collected samples at two indoor locations and one outdoor location for laboratory analysis. Direct read spot measurements were collected in three indoor locations and two outdoor locations. Sample locations are presented in Table 2:

Location ID	Location	(Number) Sample Types Collected	Sample ID
1	Indoor: East S. Hall at Room 1134	 (2) Biocassete[®] (2) Spore Traps (1) Tape-lifts (1) Bulk Direct read aerosol particulates 	BC-2, BC-3 ST-2, ST-3 1, 1A B-1 Interior @ Rm 1134
2	Indoor: West S. Hall at Room 1104	 (2) Biocassete[®] (2) Spore Traps (1) Tape-lifts (1) Bulk Direct read aerosol particulates 	BC-4, BC-5 ST-4, ST-5 2, 2A B-2 Interior @ Rm 1104
3	Outdoor: West Lobby Entrance	 (1) Biocassete[®] (1) Spore Trap Direct read aerosol particulates 	BC-1 ST-1 Outdoor West
4	Indoor: Pierce Hall South Lobby	Direct read aerosol particulates	Indoor – South Lobby
5	Outdoor - East Courtyard	Direct read aerosol particulates	Outdoor - East

 Table 2- Sample Location and Types

Appendix 1 presents a field map with corresponding Location and Sample IDs.

BC2, ST2, BC4, and ST4 samples were collected at a distance of ~ 1 ' below the impacted insulation material. BC3, ST3, BC5, and ST5 samples were collected at an adult breathing zone. Direct read aerosol particulate measurements were also collected at an adult breathing zone.

Laboratory analytical results for non-viable bioaerosols are presented in Table 3:

Sample ID: Location	Total spores/m ³	Spore Type	Raw count	Calc. count	% of total
ST-1: Exterior- Outside South Main Entrance	2,300	Cladosporium Penicillium/Aspergillus types Basidiospores Smuts, Periconia, Myxomycetes Ulocladium Ascospores Other brown Oidium Alternaria Torula Tetraploa Stachybotrys Nigrospora Ganoderma Chaetomium	16 11 7 16 4 1 2 2 2 1 1 1 1 1 1 1	850 590 370 210 53 53 27 27 27 27 13 13 13 13 13 13 13	37 25 16 9 2 2 1 1 1 1 1 1 1 1 1 1 1
		Bipolaris/Drechslera group	1	13	1
ST-2: Interior- East S. Hallway at Room 1134 near Ceiling	110	Penicillium/Aspergillus types Cladosporium	1 1	53 53	50 50
ST-3: Interior- East S. Hallway at 1134 at Breathing Zone	110	Penicillium/Aspergillus types Smuts, Periconia, Myxomycetes Other brown Alternaria	1 2 1 1	53 27 13 13	50 25 13 13
ST-4: Interior- West S. Hallway at Room 1104 near Ceiling	at 440 Cladosporium Penicillium/Aspergillus types Basidiospores Smuts, Periconia, Myxomycetes Other brown Ganoderma		5 1 1 2 1 1 1	270 53 53 27 13 13 13	61 12 12 6 3 3 3

Table 3 - Summary Bioaerosols via Spore Trap Analysis – Non-viable methodology (September 20, 2019)

Limited Hazardous Material Sampling Assessment University of California - Riverside Pierce Hall – South Hallway Riverside, California

Continuation of Table 3:

Sample ID: Location	Spore Type	Raw count	Calc. count	% of total	
		Cladosporium	4	210	47
	450	Basidiospores	2	110	24
ST-5: Interior-		Penicillium/Aspergillus types	1	53	12
		Stachybotrys	1	13	3
West S. Hallway at		Pithomyces	1	13	3
Room 1104 at		Other colorless	1	13	3
Breathing Zone		Chaetomium	1	13	3
		Bipolaris/Drechslera group	1	13	3
		Alternaria	1	13	3
ST-6: QAQC	-	None detected	-	-	-

The laboratory analytical results indicated that at the time of the sample collection, the indoor biodiversity and the bioaerosol concentrations found at both indoor sample locations were comparable to those found in the outdoors.

Laboratory analytical results for non-viable Other Biological Particulates are presented in Table 4:

Table 4 - Summary Other Biological Particles via Spore Trap Analysis(September 20, 2019) Non-Viable Methodology

Sample Locations>	ST-1: Exterior- Outside South Main Entrance		ST-2: Interior- Hallway East at Ceiling @ Rm 1134		ST-3: Interior- Hallway East at Breathing Zone @ Rm 1134		ST-4: Interior- Hallway West at Ceiling @ Rm 1104		ST-5: Interior- Hallway West at Breathing Zone @ Rm 1104		ST-6: QAQC	
Lab ID-Version :	1073	8678-1	1073	8680-1	1073	8682-1	1073	8684-1	1073	8686-1	1073	8688-1
	Raw	Particles	Raw	Particles	Raw	Particles	Raw	Particles	Raw	Particles	Raw	Particles
	Count	/m3	ct.	/m3	ct.	/m3	ct.	/m3	ct.	/m3	ct.	/m3
Grass (Poaceae)	20	270			1	13	1	13	10	130		
Other	3	40			1	13						
Palm (Arecaceae)	3	40							1	13		
Poplar, cottonwood (Populus)	1	13							5	67		
Epithelial (skin) cells	1	53	21	1,100	48	2,600	22	1,200	60	3,200		
Hyphal fragments	4	53	4	53	2	27	3	40	3	40		
NON-BIOLOGICAL												
Cellulose fibers			1	13					1	13		
Glass fiber	1	13					1	13				
Starch particles					1	13	1	13				
Synthetic fibers	2	27	5	67	2	27	1	13	3	40		
Background debris (1-4+)†	2+		2+		2+		2+		2+		ND	-
Sample volume (liters)	75		75		75		75		75		-	

Other biological particles detected were unremarkable. The elevated epithelial cell concentrations noted are considered acceptable in a hallway located within an occupied building.

Surface tape-lift laboratory analytical results are presented in Table 5:

	Sample ID: Location	1: East S. Hallway at Room 1134	1A: East S. Hallway at Room 1134	2: West S. Hallway at Room 1104	2A: West S. Hallway at Room 1104	3: QAQC			
Inorganic/Mi	neral Constituents		Numerical Ratio %						
	Cellulosic fabrics/paper		4.1	2.2	0.9				
Fibrous Constituents	Synthetic fibers (nylon, rayon, etc.)		0.5	0.4	0.2				
Fibrous Constituents	Clear fiberglass								
	Colored fiberglass	20.0	5.1	3.7	2.5				
	Quartz-like, clays, soil minerals	38.6	25.3	10.4	11.5	33.3			
	Gypsum-like, carbonates		0.5	0.2	0.6				
Non-fibrous Constituents	Other/amorphous particles			0.4	0.2				
	Unidentified opaque/corrosion/paint	8.6	24.0	16.1	16.0	33.3			
	Fire indicators- Soot, char	31.4	33.6	62.6	62.6				
Biologica	ıl Constituents	Numerical Ratio %							
Predominant mold spores	Other								
Other fungal structures	Mycelia, phialides, perithecia, etc.								
Pollen	Pinus/other								
Plant fragments	Flower parts, trichomes, etc.		6.0						
Animal fragments	Dander/skin cells	1.4		3.3	4.7	33.3			
Miscellaneous	Insect parts		0.5	0.4	0.2				
Brown/black biogenic debris	Decayed biogenic debris		0.5	0.4	0.6				

Table 5: Summary Tape-lift Surface Dust Analysis via Optical Microscopy

Omega collected two side-by-side surface tape-lift samples from insulation material at each indoor location. One sample was analyzed for inorganic mineral constituents and the other for biological constituents. Fungal structures were not detected at either sample location.

During the assessment Omega collected indoor and outdoor viable bioaerosol samples. Two samples were collected at each indoor location (east and west hallway). The outdoor viable bioaerosol sample was collected outside the west entrance to the south lobby area. Laboratory results of culturable bioaerosols are presented in Table 6.

Table 6 - Summary Viable Bioaerosols via Culturable Air Fungi Analysis (September 20, 2019)

CULTURABLE AIR FUNGI REPORT

Location:		BC-1:				BC-2:			BC-3:			
	Ext	erior-Outside S	outh Entr	v	Ha	llway East at Ce	eiling 1134	4	Hallwa	y East at Breath	ing Zone	1134
Comments (see below)		None			A				None			
Lab ID-Version1:		10738099	-1			10738100-1				10738101-	1	
Sample volume (liters)		56.66				56.66				56.66		
Positive Hole		342				342				342		
Medium:	MEA				MEA				MEA			
Weddull.	CEU: CEU:/m2 DI./m2 F			CEU*	CEU*/m3	DI /m3	2	CEU*	CEU*/m3	DI /m3	7	
S TOTAL CEU:	17	200	10	100	010	< 19	10	100	1	19	10	100
Aspergillus	- 1/	300	10	100		10	10	100	1	10	10	100
Aspergillus niger	1	18	18	6								
Aspereillus versicolor	-			-								
Aureobasidium											<u> </u>	
Basidiomycetes												
Bipolaris/Drechslera group												
Botrytis												
Chaetomium												
Cladosporium	14	250	18	82								
Curvularia												
Epicoccum												
Fusarium												
Non-sporulating fungi												
Paecilomyces												
Penicillium												
Phoma												
Phoma/coelomycetes	2	35	18	12								
Rhizopus												
Stachybotrys chartarum												
Ulocladium												
Yeasts									1	18	18	100
* cfu = colony forming units	Positive 1	hole correction of	hart used fo	or all ca	lculations							

Comments: A) No fungal colonies detected.

CULTURABLE AIR FUNGI REPORT

Location:	BC-4:				BC-5:				BC-6:			
	Hal	lway West at Co	eiling 110	4	Hallway	y West at Breath	ning Zone	1104		QAQC		
Comments (see below)		None			None				None			
Lab ID-Version‡:		10738102-	1		10738103-1					10738104-	1	
Sample volume (liters)		56.66			56.66					0		
Positive Hole	342				342				0			
Medium:	MEA				MEA				MEA			
	CFU*	CFU*/m3	DL/m3	76	CFU*	CFU*/m3	DL/m3	%	CFU*	CFU*/m3	DL/m3	%
§ TOTAL CFU*	2	35	18	100	3	53	18	100		N/A	N/A	100
Aspergillus	1	18	18	50								
Aspergillus niger												
Aspergillus versicolor												
Aureobasidium												
Basidiomycetes												
Bipolaris/Drechslera group												
Botrytis												
Chaetomium												
Cladosporium	1	18	18	50	2	35	18	67				
Curvularia												
Epicoccum												
Fusarium												
Non-sporulating fungi												
Paecilomyces												
Penicillium					1	18	18	33				
Phoma												
Phoma/coelomycetes												
Rhizopus												
Stachybotrys chartarum												
Ulocladium												
Yeasts												
* cfu = colony forming units	Positive	hole correction c	hart used fo	or all ca	culations							

Comments:

Laboratory analytical results of viable bioaerosols indicate that samples collected near duct insulation outside Room 1134 where moisture was present had very low viable fungal counts present.

Sample BC-2, which was taken ~ 1' from the duct insulation near room 1134, had below the laboratory detection limit of 18 colony forming units per cubic meter of air (CFU/m³) when cultured. Sample BC-3, taken at the adult breathing zone near room 1134, had 1 raw count (18 CFU/m³) of a type of yeast when cultured, which is the laboratory detection limit.

Samples collected near duct insulation outside Room 1104 where no moisture was present also had low counts of viable fungal spores. Sample BC-4, which was taken \sim 1' below the impacted duct insulation near room 1104, had a total of 35 CFU/m³, while sample BC-5 at the adult breathing zone had a total of 53 CFU/m³. In comparison, the sample collected at the exterior location outside the south entry to the main lobby had a total of 300 CFU/m³.

Omega collected two bulk samples from the stain impacted insulation material at; (a) East hallway near Room 1134 and (b) West hallway near Room 1104. Laboratory analytical results are presented in Table 7:

Sample ID/ Location	Sample Size/ Report Unit	Medium	Dilution Factor	Fungal ID	Colony Counts	Colony Forming Units/Unit	%
B1/E Hall @ Room 1134 (Insulation)	Size:1 Swab/ Unit:1 Swab	MEA	10	Non-Sporulating Fungi	17	170	100
B2/W Hall @ Room 1104 (Insulation)	Size:1 Swab/ Unit:1 Swab	MEA	10	None Detected	-	< 10	100

Table 7 - Summary Viable Bulk/Surface via 1-Media Fungi Culture Analysis (September 20, 2019)

MEA - Malt extract agar; < Less than; % - Percent

The findings include 17 non-sporulating fungal colonies in Sample B1, which was collected from the stain impacted insulation material impacted with moisture. Fungi was not detected on Sample B2 which was considered dry.

Direct Read Aerosol Particulate Measurements were collected using an LPC. Air samples were collected before and after the subject assessment was completed. Direct read measurements were collected in three indoor locations and two outdoor locations. Tables 8 and 9 present the respective outdoor and indoor measurements:

Location	Sample Time	PM3 (p/m^3)	PM5 (p/m^3)	PM10 (p/m^3)	Temp °F	RH %	Comments
Exterior - West Entrance	9:20 AM	333,392	84,806	10,424	68	61	Minor activity noted, area shaded
Exterior - West Entrance	12:34 PM	406,506	134,918	19,624	76	47	No activity noted, area shaded
Average - Exterio	or West Entrance:	369,949	109,862	15,024	72	54	
Total Sum Parti West Ei	culates- Exterior ntrance:	494,835					
Exterior - East Courtyard	9:17 AM	385,336	98,410	12,898	71	61	Minor activity noted, area shaded
Exterior - East Courtyard	12:31 PM	374,259	130,622	22,279	74	51	No activity noted, area shaded
Average - Exterio	r East Courtyard:	379,798	114,516	17,589	72	56	
Total Sum Parti East Co	culates- Exterior urtyard:	511,902					
Average -	Exterior:	374,873	112,189	16,306	72	55	
Average- Total S West &	Sum Particulates East :	503,369					

Table 8- Direct Read- Outdoor Aerosol Particulate Measurements

PM - particulate matter; p/m^3 - particles per cubic meter; °F - degrees Fahrenheit; RH - relative humidity as a percent

Table 9- Direct Read- Indoor Aerosol Particulate Measurements

Direct Read - Indoor Aerosol Particulate Measurements											
Location	Sample Time	PM3 (p/m^3)	PM5 (p/m^3)	PM10 (p/m^3)	Temp °F	RH %	Comments				
East S. Hall @ Room 1134	9:06 AM	316,445	173,766	39,968	67	66	No foot traffic noted				
East S. Hall @ Room 1134	12:22 PM	118,984	59,766	13,891	67	66	No foot traffic noted				
Average - Exterior West Entrance:		217,715	116,766	26,930	67	66					
Total Sum East S. Hall (Particulates- @ Room 1134:	361,410									
West S. Hall @ Room 1104	9:10 AM	53,722	19,764	4,312	69	61	No foot traffic noted				
West S. Hall @ Room 1104	12:25 PM	104,570	41,864	8,085	69	63	No foot traffic noted				
Average - Exterio	or East Courtyard:	79,146	30,814	6,199	69	62					
Total Sum East S. Hall (Particulates- @ Room 1104:	116,159									
Pierce Hall Lobby	9:14 AM	143,559	62,347	14,194	70	60	No foot traffic noted				
Pierce Hall Lobby	12:28 PM	213,517	78,796	16,861	72	54	No foot traffic noted				
Average - Exterio	or East Courtyard:	178,538	70,572	15,528	71	57					
Total Sum Pierce Ha	Particulates- Ill Lobby:	264,637									
Average	- Interior:	158,466	72,717	16,219	69	62					
Average- Total S Interior L	Sum Particulates ocationst :	247,402									

PM - particulate matter; p/m^3 - particles per cubic meter; °F - degrees Fahrenheit; RH - relative humidity as a percent

For total respirable particles (diameter <10 micrometers), it was found that the ambient air outside Pierce Hall had an average of 503,369 respirable particles per cubic meter (m^3). The indoor air on the first floor of Pierce Hall along the south hallway and lobby had an average of 247,402 particles per m^3 . The overall respirable particle concentrations inside the building were found to be significantly lower than those found outside the building.

5. <u>CONCLUSIONS AND RECOMMENDATIONS</u>

The findings confirm that there is no evidence of significant viable and non-viable fungal growth on the stain impacted insulation along the south hallway.

Therefore, it is Omega's professional opinion that the stain impacted insulation has no adverse effects on the building occupants utilizing the hallway.

Moisture intrusion issues impacting the insulation material were noted at the east hallway area near Room #1134. Omega recommends that the moisture-impacted insulation material be removed and discarded, and that the source of moisture intrusion be identified and repaired as soon as possible. Additional recommendations are not warranted at this time.

6. <u>LIMITATIONS</u>

This report and opinions are based on evidence provided by the University of California – Riverside, Environmental Health and Safety officials and the results of the samples collected by Omega Environmental Inc., and Ambient Environmental Inc. If additional information or findings are made available, we reserve the right to change our opinions.

Our services consist of professional opinions, conclusions, and recommendations that are made in accordance with generally accepted consulting standards, principles, and practices. Reasonable attempts have been made to provide a report that is complete and accurate with respect to Omega's authorized scope of investigation. Omega assumes no liability for damages, which might result from errors contained in the report or conditions, which the report fails to disclose.

Appendix 1

Omega Field Notes & Field Map with Sample Locations

Field Logs

PAGE _____ OF _____

	. F	liha	
PROJECT NAME	VCR PIErce Hall South Hall Sam	DATE	09/20/19
SITE ADDRESS	1600 Campis pr	Omega PROJECT #	2019-3488UCR
SITE CONTACT	kyle Sol12 Ub1- 406-2849	IH NAME	TS

0800: omego onsite meet tyle solie of vir @ Dean's office pm1148.
set vp equipment & callibrate High Vol pump.
0830: Use IR cam to confirm E& W sampling locations:
DEast South Hall . Room 1134 - VISIble staining, MM=2.9-5.) (
@west south Hall: outside Rm 1104 - visible standing, MM= 0.3-0.4 (
0900: Take particulate medsmements
1)1134 2)1104 3) Lobby 4) W. extensor 6) e. corrtyard ext.
0930: calibrate biopump. take exterior (w) ST sample
take exterior west biocasselle sample
10:30: take interior biocassette samples
west Hall @ 1104 : 1' from Insulation & breathing area (2)
east Hall @ 1134: certing & breathing (2)
FILL OUT COC, package 5 samples +1 blank on ice.
11:00: take indoor sponetrup samples
whall @ 1104: celling & breathing (2)
E Hall @ 1134: celling & breathing (2)
Fill off coc, package 5 samples + I blank
12:00 take 2 tapelifts & I bulk sample from fiberglass
duct insulation @EHall@11348@ WHAP@1104
12:30: take final participitA, B-1 212A, B-2
measurements (31h, 2014.

Omega IH Signature: Typhthe

mojstne) dry)

Appendix 2

Laboratory Analytical Results & Chain of Custodies

Report for:

Ms. Irene Benavides, Mr. Kumar Gunaratna, Mr. Navid Salari Omega Environmental Services, Inc.: CA 4570 Campus Drive, Ste. 30 Newport Beach, CA 92660

Regarding: Project: 2019-3488UCR; Pierce Hall-1st Floor South Hallway EML ID: 2258181

Approved by:

Technical Manager Danny Li

Dates of Analysis: Spore trap analysis: 09-23-2019

Service SOPs: Spore trap analysis (EM-MY-S-1038) AIHA-LAP, LLC accredited service, Lab ID #178697

All samples were received in acceptable condition unless noted in the Report Comments portion in the body of the report. Due to the nature of the analyses performed, field blank correction of results is not applied. The results relate only to the samples as received. Sample air volume is supplied by the client.

Eurofins EMLab P&K ("the Company") shall have no liability to the client or the client's customer with respect to decisions or recommendations made, actions taken or courses of conduct implemented by either the client or the client's customer as a result of or based upon the Test Results. In no event shall the Company be liable to the client with respect to the Test Results except for the Company's own willful misconduct or gross negligence nor shall the Company be liable for incidental or consequential damages or lost profits or revenues to the fullest extent such liability may be disclaimed by law, even if the Company has been advised of the possibility of such damages, lost profits or lost revenues. In no event shall the Company's liability with respect to the Test Results exceed the amount paid to the Company by the client therefor.

Eurofins EMLab P&K's LabServe® reporting system includes automated fail-safes to ensure that all AIHA-LAP, LLC quality requirements are met and notifications are added to reports when any quality steps remain pending.

17461 Derian Ave, Suite 100, Irvine, CA 92614 (866) 888-6653 Fax (623) 780-7695 www.emlab.com

Client: Omega Environmental Services, Inc.: CA C/O: Ms. Irene Benavides, Mr. Kumar Gunaratna, MrDate of Receipt: 09-20-2019 Navid Salari Re: 2019-3488UCR; Pierce Hall-1st Floor South Hallway

Date of Sampling: 09-20-2019 Date of Report: 09-23-2019

SPORE TRAP REPORT: NON-VIABLE METHODOLOGY

Location:		ST-1:			ST-2:					
	Exterior-Out	side South	Main Entrance	Interior-Hall	lway East a	t Ceiling 1134				
Comments (see below)		None			None					
Lab ID-Version [‡] :		10738677-	1	10738679-1						
Analysis Date:		09/23/201	9		09/23/201	9				
	raw ct.	% read	spores/m3	raw ct.	% read	spores/m3				
Alternaria	2	100	27							
Ascospores	1	25	53							
Basidiospores	7	25	370							
Bipolaris/Drechslera group	1	100	13							
Chaetomium	1	100	13							
Cladosporium	16	25	850	1	25	53				
Ganoderma	1	100	13							
Nigrospora	1	100	13							
Oidium	2	100	27							
Other brown	2	100	27							
Other colorless										
Penicillium/Aspergillus types [†]	11	25	590	1	25	53				
Smuts, Periconia, Myxomycetes	16	100	210							
Stachybotrys	1	100	13							
Tetraploa	1	100	13							
Torula	1	100	13							
Ulocladium	4	100	53							
Background debris (1-4+) ^{††}	2+			2+						
Hyphal fragments/m3	53			53						
Pollen/m3	360			< 13						
Skin cells (1-4+)	< 1+			1+						
Sample volume (liters)	75			75						
§ TOTAL SPORES/m3			2,300			110				

Comments:

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore.

† The spores of Aspergillus and Penicillium (and others such as Acremonium, Paecilomyces) are small and round with very few distinguishing characteristics. They cannot be differentiated by non-viable sampling methods. Also, some species with very small spores are easily missed, and may be undercounted.

†Background debris indicates the amount of non-biological particulate matter present on the trace (dust in the air) and the resulting visibility for the analyst. It is rated from 1+ (low) to 4+ (high). Counts from areas with 4+ background debris should be regarded as minimal counts and may be higher than reported. It is important to account for samples volumes when evaluating dust levels.

The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

For more information regarding analytical sensitivity, please contact QA by calling the laboratory.

‡ A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

§ Total Spores/m3 has been rounded to two significant figures to reflect analytical precision.

17461 Derian Ave, Suite 100, Irvine, CA 92614 (866) 888-6653 Fax (623) 780-7695 www.emlab.com

Client: Omega Environmental Services, Inc.: CA C/O: Ms. Irene Benavides, Mr. Kumar Gunaratna, MrDate of Receipt: 09-20-2019 Navid Salari Re: 2019-3488UCR; Pierce Hall-1st Floor South Hallway

Date of Sampling: 09-20-2019 Date of Report: 09-23-2019

SPORE TRAP REPORT: NON-VIABLE METHODOLOGY

Location:	Interior-Hally	ST-3: vav East at l	Breathing Zone	Interior Hell	ot Coiling 1104				
	Interior-many	1134 1134	Breathing Zone	Interior-Hair	way west	at Celling 1104			
Comments (see below)		None			None				
Lab ID-Version [‡] :		10738681-	1		10738683-	1			
Analysis Date:		09/23/2019	9		09/23/201	9			
	raw ct.	% read	spores/m3	raw ct. % read spores/m3					
Alternaria	1	100	13	1	100	13			
Ascospores									
Basidiospores				1	25	53			
Bipolaris/Drechslera group									
Chaetomium									
Cladosporium				5	270				
Ganoderma				1	13				
Nigrospora									
Oidium									
Other brown	1	100	13	1	100	13			
Other colorless									
Penicillium/Aspergillus types†	1	25	53	1	25	53			
Pithomyces									
Smuts, Periconia, Myxomycetes	2	100	27	2	100	27			
Stachybotrys									
Tetraploa									
Background debris (1-4+) ^{††}	2+			2+					
Hyphal fragments/m3	53			40					
Pollen/m3	27			13					
Skin cells (1-4+)	1+			1+					
Sample volume (liters)	75			75					
§ TOTAL SPORES/m3			110			440			

Comments:

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore.

† The spores of Aspergillus and Penicillium (and others such as Acremonium, Paecilomyces) are small and round with very few distinguishing characteristics. They cannot be differentiated by non-viable sampling methods. Also, some species with very small spores are easily missed, and may be undercounted.

†Background debris indicates the amount of non-biological particulate matter present on the trace (dust in the air) and the resulting visibility for the analyst. It is rated from 1+ (low) to 4+ (high). Counts from areas with 4+ background debris should be regarded as minimal counts and may be higher than reported. It is important to account for samples volumes when evaluating dust levels.

The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

For more information regarding analytical sensitivity, please contact QA by calling the laboratory.

‡ A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

§ Total Spores/m3 has been rounded to two significant figures to reflect analytical precision.

17461 Derian Ave, Suite 100, Irvine, CA 92614 (866) 888-6653 Fax (623) 780-7695 www.emlab.com

Client: Omega Environmental Services, Inc.: CA C/O: Ms. Irene Benavides, Mr. Kumar Gunaratna, MrDate of Receipt: 09-20-2019 Navid Salari Re: 2019-3488UCR; Pierce Hall-1st Floor South Hallway

Date of Sampling: 09-20-2019 Date of Report: 09-23-2019

SPORE TRAP REPORT: NON-VIABLE METHODOLOGY

Location:		ST-5:		ST-6:					
	Interior-Hal	lway West	t at Breathing		QAQC				
		Zone 110	4						
Comments (see below)		None		A					
Lab ID-Version [‡] :		10738685-	-1	10738687-1					
Analysis Date:		9							
	raw ct.	% read	spores/m3	raw ct.	% read	spores/m3			
Alternaria	1	100	13						
Ascospores									
Basidiospores	2	25	110						
Bipolaris/Drechslera group	1	100	13						
Chaetomium	1	100	13						
Cladosporium	4	25	210						
Ganoderma									
Nigrospora									
Oidium									
Other brown									
Other colorless	1	100	13						
Penicillium/Aspergillus types†	1	25	53						
Pithomyces	1	100	13						
Smuts, Periconia, Myxomycetes									
Stachybotrys	1	100	13						
Tetraploa									
Background debris (1-4+)††	2+			None					
Hyphal fragments/m3	40			N/A					
Pollen/m3	210			N/A					
Skin cells (1-4+)	1+			None					
Sample volume (liters)	75			0					
§ TOTAL SPORES/m3			450			N/A			

Comments: A) No trace present.

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore.

† The spores of Aspergillus and Penicillium (and others such as Acremonium, Paecilomyces) are small and round with very few distinguishing characteristics. They cannot be differentiated by non-viable sampling methods. Also, some species with very small spores are easily missed, and may be undercounted.

†Background debris indicates the amount of non-biological particulate matter present on the trace (dust in the air) and the resulting visibility for the analyst. It is rated from 1+ (low) to 4+ (high). Counts from areas with 4+ background debris should be regarded as minimal counts and may be higher than reported. It is important to account for samples volumes when evaluating dust levels.

The analytical sensitivity is the spores/m³ divided by the raw count, expressed in spores/m³. The limit of detection is the analytical sensitivity (in spores/m³) multiplied by the sample volume (in liters) divided by 1000 liters.

For more information regarding analytical sensitivity, please contact QA by calling the laboratory.

‡ A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

§ Total Spores/m3 has been rounded to two significant figures to reflect analytical precision.

Report for:

Ms. Irene Benavides, Mr. Kumar Gunaratna, Mr. Navid Salari Omega Environmental Services, Inc.: CA 4570 Campus Drive, Ste. 30 Newport Beach, CA 92660

Regarding: Project: 2019-3488UCR; Pierce Hall-1st Floor South Hallway EML ID: 2258181

Approved by:

Technical Manager Danny Li

Dates of Analysis: Spore trap analysis other particles-Supplement: 09-23-2019

Service SOPs: Spore trap analysis other particles-Supplement (EM-MY-S-1038) AIHA-LAP, LLC accredited service, Lab ID #178697

All samples were received in acceptable condition unless noted in the Report Comments portion in the body of the report. Due to the nature of the analyses performed, field blank correction of results is not applied. The results relate only to the samples as received. Sample air volume is supplied by the client.

Eurofins EMLab P&K ("the Company") shall have no liability to the client or the client's customer with respect to decisions or recommendations made, actions taken or courses of conduct implemented by either the client or the client's customer as a result of or based upon the Test Results. In no event shall the Company be liable to the client with respect to the Test Results except for the Company's own willful misconduct or gross negligence nor shall the Company be liable for incidental or consequential damages or lost profits or revenues to the fullest extent such liability may be disclaimed by law, even if the Company has been advised of the possibility of such damages, lost profits or lost revenues. In no event shall the Company's liability with respect to the Test Results exceed the amount paid to the Company by the client therefor.

Eurofins EMLab P&K's LabServe® reporting system includes automated fail-safes to ensure that all AIHA-LAP, LLC quality requirements are met and notifications are added to reports when any quality steps remain pending.

17461 Derian Ave, Suite 100, Irvine, CA 92614 (866) 888-6653 Fax (623) 780-7695 www.emlab.com

Client: Omega Environmental Services, Inc.: CA C/O: Ms. Irene Benavides, Mr. Kumar Gunaratna, MrDate of Receipt: 09-20-2019 Navid Salari Re: 2019-3488UCR; Pierce Hall-1st Floor South Hallway

Date of Sampling: 09-20-2019 Date of Report: 09-23-2019

OTHER BIOLOGICAL PARTICLES REPORT: NON-VIABLE METHODOLOGY

Location:	S Exterior-C Main	T-1: Outside South Entrance	S Interior-Ha Ceili	T-2: allway East at ng 1134	S Interior-Ha Breathing	T-3: allway East at g Zone 1134
Comments (see below)	1	None	N	None	1	None
Lab ID-Version [‡] :	1073	38678-1	1073	38680-1	107.	38682-1
	raw ct.	particles/m3	raw ct.	particles/m3	raw ct.	particles/m3
POLLEN						
Grass (Poaceae)	20	270			1	13
Other	3	40			1	13
Palm (Arecaceae)	3	40				
Poplar, cottonwood (Populus)	1	13				
Sycamore (Platanus)						
OTHER PLANT						
Algae						
Diatoms						
Fern, moss, etc. spores						
Other (wood, trichomes, etc.)						
OTHER PARTICLES:						
ANIMAL						
Epithelial (skin) cells	1	53	21	1,100	48	2,600
Hair						
Insect parts						
Mites						
FUNGI						
Hyphal fragments	4	53	4	53	2	27
NON-BIOLOGICAL						
Cellulose fibers			1	13		
Glass fiber	1	13				
Starch particles					1	13
Synthetic fibers	2	27	5	67	2	27
Background debris (1-4+)†	2+		2+		2+	
Sample volume (liters)	75		75		75	
Comments:						

The analytical sensitivity is the spores/m3 divided by the raw count. The limit of detection is the analytical sensitivity multiplied by the sample volume divided by 1000.

Carbonaceous particles include soot and other combustion products. In most instances a detailed analysis of soot can be accomplished using scanning electron microscopy.

Note: Interpretation is left to the company and/or persons who conducted the field work.

† Background debris is an indication of the amounts of non-biological particulate matter present on the slide (dust in the air) and is graded from 1+ to 4+ with 4+ indicating the largest amounts. To evaluate dust levels it is important to account for differences in sample volume.

‡ A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x". EMLab P&K, LLC

17461 Derian Ave, Suite 100, Irvine, CA 92614 (866) 888-6653 Fax (623) 780-7695 www.emlab.com

Client: Omega Environmental Services, Inc.: CA C/O: Ms. Irene Benavides, Mr. Kumar Gunaratna, MrDate of Receipt: 09-20-2019 Navid Salari Re: 2019-3488UCR; Pierce Hall-1st Floor South Hallway

Date of Sampling: 09-20-2019 Date of Report: 09-23-2019

OTHER BIOLOGICAL PARTICLES REPORT: NON-VIABLE METHODOLOGY

Location:	S Interior-Ha Ceili	T-4: llway West at ng 1104	S Interior-Ha Breathing	T-5: llway West at g Zone 1104	S Q	T-6: AQC
Comments (see below)	N	None	Ν	None	Ν	Vone
Lab ID-Version‡:	1073	38684-1	1073	38686-1	1073	38688-1
	raw ct.	particles/m3	raw ct.	particles/m3	raw ct.	particles/m3
POLLEN						
Grass (Poaceae)	1	13	10	130		
Other						
Palm (Arecaceae)			1	13		
Poplar, cottonwood (Populus)			5 67			
Sycamore (Platanus)						
OTHER PLANT						
Algae						
Diatoms						
Fern, moss, etc. spores						
Other (wood, trichomes, etc.)						
OTHER PARTICLES:						
ANIMAL						
Epithelial (skin) cells	22	1,200	60	3,200		
Hair						
Insect parts						
Mites						
FUNGI						
Hyphal fragments	3	40	3	40		
NON-BIOLOGICAL						
Cellulose fibers			1	13		
Glass fiber	1	13				
Starch particles	1	13				
Synthetic fibers	1	13	3	40		
Background debris (1-4+)†	2+		2+		None	
Sample volume (liters)	75		75		0	
Comments:						

The analytical sensitivity is the spores/m3 divided by the raw count. The limit of detection is the analytical sensitivity multiplied by the sample volume divided by 1000.

Carbonaceous particles include soot and other combustion products. In most instances a detailed analysis of soot can be accomplished using scanning electron microscopy.

Note: Interpretation is left to the company and/or persons who conducted the field work.

† Background debris is an indication of the amounts of non-biological particulate matter present on the slide (dust in the air) and is graded from 1+ to 4+ with 4+ indicating the largest amounts. To evaluate dust levels it is important to account for differences in sample volume.

‡ A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x". EMLab P&K, LLC EMLab ID: 2258181, Page 3 of 3

002258181

	CHAIN www.EN	OF CUSTODY ILabPK.com		America Cor	&K	Weather Foo	Rain Snow Wind Clear						REC (U	QUES	STE	D SE	RVIC	CES w)			002	
	Cherry Hill, Phoenix, AZ San Bruno,	NJ: 1936 Olney Avenue, Cherry Hi 2 1501 West Knudsen drive, Phoen CA: 1150 Bayhill Drive, #100, San I	II, NJ 08003 * (866) 8 iix, AZ 85027 * (800) Bruno, CA 94066 * (8	71-1984 651-4802 666) 888-6653		A Light Moderate Heavy			Non-C Spore Trap	Ta Sw Bu	ible pe ab ilk	Bi	oCassi later, B	ette™ Sulk, D	, Ande ust, S	able ersen, S oil, Cor	SAS, S ntact F	Swab, Plates	(Other R	beques	ts
			CONT	ACT INFORM	ATION			1											1007	in.		
	Company:	Omega Environmental Se	ervices, Inc.	Address: 4570 C	ampus D	rive, Suite 30, New	port Beach, CA 92660.	11							teria				1 HSC	(9		
	Contact:	Kumar Gunaratna		Special Instructions	E-MAIL	RESULTS TO:		11				3	3 3	2	e Bac				of UNIC	R-93-1		
	Phone:	949-252-2145 Off/ 949-23	0-4440 Cell		KUMAH	, NAVID, TANYA &	IRENE	1				pi spi	p. sp	spp.)	Surfac	18			00	1009 p		
		PROJECT INFO	ORMATION		T	URN AROUND TH	ME CODES (TAT)	11	ficies	(evit	Exam	+ 48	0+ As	Asp.	Air &	Abser	(msim)		4 H H H H	metho		
	Project ID:	2019-3488UCR			STD -	Standard (DEFAULT)	Purchase monitorial after 2 am	11,	er par	Qualitia	Direct	nus IC	nus E	+ QI S	urable	BUCB	fy onge	(mism)	en littor	EPAr		
	Project Description:	Pierce Hall - 1st Floor s	outh hallway		ND - N	lext Business Day	or on weekends, will be		- Oth)) mex	Count C	igi (Ge	gi (Ge	(Genu	s (Cult	6 (Prec	(speci	fy orga	e Scre	PLM		
	Project Zip Code:	92521	Sampling Date & Time: 9	/20/19	SD - S	ame Business Day Rush	next business day. Please	Į,	nalvsis	copic E	pore (Ce Fur	Ce Fur	Fungi	Count	E B	tration	(speci	Sewag	lysis-	lest);	nuina
	PO Number:	N/A	Sampled TS		WH-V	Weekend / Holiday	weekend analysis needs.	3	Trap A	Microso	tative S	a Sunta	a Sunfa	ble Air	Stain &	oliform	ane Fil	acteria	- YEI	os Ant	pecify	fu Sa
SNH	Sample ID	Descriptio	m	Sample Type (Below)	TAT (Above)	Total Volume / Area	Notes	i and	Spore	Direct	Quantit	1-Medi	2-Medi 3-Medi	Cultura	Gram	Legion Total C	Membr	MPNB	Ashest	Asbest	PCR (s	Snaci
3118	ST-1	Exterior - Outside South	Main Entrance	ST	STD	75 L	19:43a,66.9°,65.19	h														
215	51-2	Interior - Hallway East @	Ceiling 1134		1		11:07, 66.90, 64.0%		11													ā
282	ST-3	Interior - Hallway East @	breathing zon	е			11:13,68-79,68.4%															ā
297	ST-4	Interior - Hallway West	@ Ceiling 1104				11:20,68.90,59.60%															ā
300	ST-6	Interior - Hallway West	It breathing zon	ne V	V	1	11:27, 69.6, 56.7%															ā
315	ST-6	QAQC		ST	STO	NIA	N/A	Ī														Ī
								1Ē														Ē
								16														Ē
								16														ī
[5
[Ē

SAMPLE TYPE CODES			RELINQUISHED BY	DATE & TIME	RECEIVED BY	DATE & TIME	
BC – BioCassette ™	ST - Spore Trap: Zefon,	Т-Таре	D – Dust	TOWN	0.000.000	~	AL DELIN
A1S – Anderson	Allergenco, Burkard	SW - Swab	SO – Soil	Seneviratne	9/20/19		9/20/1919.44
SAS - Surface Air Sampler	P - Potable Water	B – Bulk				0	
CP - Contact Plate	NP - Non-Potable Water	0 - Other:					

By submitting this Chain of Custody, you agree to be bound by the terms and conditions set forth at http://www.emlab.com/s/main/serviceterms.html

Copyright @ 2002-2012 EMLab P&K

Doc. #1192 Rev 27 Revised 4/13/2012 Page 1 of 1, QA

		SURFACE DUST ANALYSIS - Optical Microscopy	Meth	nod: Dl	JST-D02
	Client Name :	Omega Environmental Services, Inc.		Page 1	of 5
	Client Project # :	2019-3488UCR			
7 2	Requested by :	Dr. Wade	Sample colle	ected :	9/20/19
Р	roject Description :	2019-3488UCR	Sample rec	eived :	9/23/19
	Client Sample # :	1-1134	Magnific	cation :	500x
Client s	sample description:	Stain impacted duct insulation - So corridor (east end loca	ation) Fields cou	unted :	5
	EAA Project # :	19-1218 Fi	eld area counted (mm²) :	0.69
	EAA Sample # :	1	Total particles cou	unted :	70
	Sample media:	Tape D	etection Limit (nur	n. %) :	1.43
Sum	mary Conclusions :	No mold detected			

		* Particles /	Numerical	Estimated
	INORGANIC / MINERAL CONSTITUENTS	mm²	Ratio %	Area %
Fibrous Constituents :	Cellulosic fabrics / paper			
	Synthetic fibers (nylon, rayon, etc.)			
	Clear fiberglass			
	Colored fiberglass		20.0	64.6
Non-fibrous Constituents :	Quartz-like, clays, soil minerals		38.6	11.7
	Gypsum-like, carbonates			
	Other / amorphous particles			
	Unidentified opaque / corrosion / paint		8.6	8.7
	Fire indicators - Soot, char		31.4	12.4
	BIOLOGICAL CONSTITUENTS			
Predominant mold spores :	Other			
Other fungal structures :	Mycelia, phialides, perithecia, etc.			
Pollen :	Pinus / other			
Plant fragments :	Flower parts, trichomes, etc.			
Animal fragments :	Dander / skin cells		1.4	2.6
Miscellaneous :	Insect parts			
Brown/black biogenic debris :	Decayed biogenic debris			

Date : 9/26/19

doc.rev.2019-7 4/2/19

 Indicates particle surface density (particles / mm2) cannot be calculated from the type of submitted sample Note: Sample results are only applicable to the items or locations tested

		SURFACE DUST ANALYSIS - Optical Microscopy	Method: DL	JST-D02
	Client Name :	Omega Environmental Services, Inc.	Page 2	of 5
美人	Client Project # :	2019-3488UCR		
	Requested by :	Dr. Wade	Sample collected :	9/20/19
	Project Description :	2019-3488UCR	Sample received :	9/23/19
	Client Sample # :	1A-1134	Magnification :	500x
Client	t sample description:	Stain impacted duct insulation - So corridor (east end le	ocation) Fields counted :	5
	EAA Project # :	19-1218	Field area counted (mm ²) :	0.69
	EAA Sample # :	2	Total particles counted :	217
	Sample media:	Таре	Detection Limit (num. %) :	0.46
Su	Immary Conclusions :	No mold detected		

		* Particles /	Numerical	Estimated
	INORGANIC / MINERAL CONSTITUENTS	mm ²	Ratio %	Area %
Fibrous Constituents :	Cellulosic fabrics / paper		4.1	14.6
	Synthetic fibers (nylon, rayon, etc.)		0.5	3.0
	Clear fiberglass			
	Colored fiberglass		5.1	17.9
Non-fibrous Constituents :	Quartz-like, clays, soil minerals		25.3	8.4
	Gypsum-like, carbonates		0.5	0.2
	Other / amorphous particles			
	Unidentified opaque / corrosion / paint		24.0	26.4
	Fire indicators - Soot, char		33.6	14.5
	BIOLOGICAL CONSTITUENTS			
Predominant mold spores :	Other			
Other fungal structures :	Mycelia, phialides, perithecia, etc.			
Pollen :	Pinus / other			
Plant fragments :	Flower parts, trichomes, etc.		6.0	13.2
Animal fragments :	Dander / skin cells			
Miscellaneous :	Insect parts		0.5	0.8
Brown/black biogenic debris :	Decayed biogenic debris		0.5	0.9
	ESTIMATED AREA % / NUMERICA	L RATIO %		
BIO	GENIC FIBERS	IN(ORGANIC	
70.0				
				57.6

Date : 9/26/19

doc.rev.2019-7 4/2/19

* Indicates particle surface density (particles / mm2) cannot be calculated from the type of submitted sample

Note: Sample results are only applicable to the items or locations tested

NAY N		SURFACE DUST ANALYSIS - Optical Microscopy	Method: DL	JST-D02
	Client Name :	Omega Environmental Services, Inc.	Page 3	of 5
	Client Project # :	2019-3488UCR		
7	Requested by :	Dr. Wade	Sample collected :	9/20/19
	Project Description :	2019-3488UCR	Sample received :	9/23/19
	Client Sample # :	2-1104	Magnification :	500x
Clien	t sample description:	Stain impacted duct insulation - So corridor (west end	location) Fields counted :	5
	EAA Project # :	19-1218	Field area counted (mm ²) :	0.69
	EAA Sample # :	3	Total particles counted :	492
	Sample media:	Таре	Detection Limit (num. %) :	0.20
Su	Immary Conclusions :	No mold detected		

		* Particles /	Numerical	Estimated
	INORGANIC / MINERAL CONSTITUENTS	mm²	Ratio %	Area %
Fibrous Constituents :	Cellulosic fabrics / paper		2.2	7.1
	Synthetic fibers (nylon, rayon, etc.)		0.4	3.1
	Clear fiberglass			
	Colored fiberglass		3.7	19.1
Non-fibrous Constituents :	Quartz-like, clays, soil minerals		10.4	4.0
	Gypsum-like, carbonates		0.2	0.1
	Other / amorphous particles		0.4	0.2
	Unidentified opaque / corrosion / paint		16.1	20.7
	Fire indicators - Soot, char		62.6	36.4
	BIOLOGICAL CONSTITUENTS			
Predominant mold spores :	Other			
Other fungal structures :	Mycelia, phialides, perithecia, etc.			
Pollen :	Pinus / other			
Plant fragments :	Flower parts, trichomes, etc.			
Animal fragments :	Dander / skin cells		3.3	7.6
Miscellaneous :	Insect parts		0.4	0.8
Brown/black biogenic debris :	Decayed biogenic debris		0.4	0.9
	ESTIMATED AREA % / NUMERICA	L RATIO %		
BIOG	ENIC FIBERS	INC	DRGANIC	
90.0				78.7
80.0				
70.0				F7 4

Date : 9/26/19

* Indicates particle surface density (particles / mm2) cannot be calculated from the type of submitted sample Note: Sample results are only applicable to the items or locations tested

		SURFACE DUST ANALYSIS - Optical Microscopy	Method: DUST-D02
	Client Name :	Omega Environmental Services, Inc.	Page 4 of 5
	Client Project # :	2019-3488UCR	
7 -	Requested by :	Dr. Wade	Sample collected : 9/20/19
	Project Description :	2019-3488UCR	Sample received : 9/23/19
	Client Sample # :	2A-1104	Magnification: 500x
Clien	t sample description:	Stain impacted duct insulation - So corridor (west end	location) Fields counted : 5
	EAA Project # :	19-1218	Field area counted (mm ²) : 0.69
	EAA Sample # :	4	Total particles counted : 530
	Sample media:	Таре	Detection Limit (num. %) : 0.19
Su	Immary Conclusions :	No mold detected	

		* Particles /	Numerical	Estimated
	INORGANIC / MINERAL CONSTITUENTS	mm²	Ratio %	Area %
Fibrous Constituents :	Cellulosic fabrics / paper		0.9	2.9
	Synthetic fibers (nylon, rayon, etc.)		0.2	1.1
	Clear fiberglass			
	Colored fiberglass		2.5	7.6
Non-fibrous Constituents :	Quartz-like, clays, soil minerals		11.5	3.3
	Gypsum-like, carbonates		0.6	0.2
	Other / amorphous particles		0.2	0.1
	Unidentified opaque / corrosion / paint		16.0	15.5
	Fire indicators - Soot, char		62.6	60.4
	BIOLOGICAL CONSTITUENTS			
Predominant mold spores :	Other			
Other fungal structures :	Mycelia, phialides, perithecia, etc.			
Pollen :	Pinus / other			
Plant fragments :	Flower parts, trichomes, etc.			
Animal fragments :	Dander / skin cells		4.7	8.2
Miscellaneous :	Insect parts		0.2	0.3
Brown/black biogenic debris :	Decayed biogenic debris		0.6	0.5
	ESTIMATED AREA % / NUMERICA	L RATIO %		
BIOG	GENIC FIBERS	IN	ORGANIC	
90.0				
80.0				75.9 78.7
70.0				
60.0				
50.0				
40.0				
30.0				
20.0	8.2 47 40 7.6 05	11.5		
0.0 0.0 0.3 0.2		5.5	0.2 0.8	
10 ⁶ 20 ⁵	nic nts wes	als.	mer	, di
which all se	boge agree with setting	ninet	kel ^{OU}	oni
Mold 3 APRAL ON	New Colling Co	tison stoon	alcorre	
Polle	Chin Collin Lin Orac	. Gypler	Opaque	
	-	Ŭ	0	

Date : 9/26/19

 Indicates particle surface density (particles / mm2) cannot be calculated from the type of submitted sample Note: Sample results are only applicable to the items or locations tested

		SURFACE DUST ANALYSIS - Optical Microscopy	Method: DUST-D02
	Client Name :	Omega Environmental Services, Inc.	Page 5 of 5
	Client Project # :	2019-3488UCR	(end of data report)
	Requested by :	Dr. Wade	Sample collected : 9/20/19
P	roject Description :	2019-3488UCR	Sample received : 9/23/19
	Client Sample # :	3-Blank	Magnification: 200x
Client s	ample description:	QAQC	Fields counted: 10
	EAA Project # :	19-1218	Field area counted (mm ²) : 8.67
	EAA Sample # :	5	Total particles counted : 3
	Sample media:	Таре	Detection Limit (num. %): 33.33
Sum	mary Conclusions :	No mold detected	
		3 total particles detected	

		* Particles /	Numerical	Estimated
	INORGANIC / MINERAL CONSTITUENTS	mm²	Ratio %	Area %
Fibrous Constituents :	Cellulosic fabrics / paper			
	Synthetic fibers (nylon, rayon, etc.)			
	Clear fiberglass			
	Colored fiberglass			
Non-fibrous Constituents :	Quartz-like, clays, soil minerals		33.3	9.7
	Gypsum-like, carbonates			
	Other / amorphous particles			
	Unidentified opaque / corrosion / paint		33.3	32.3
	Fire indicators - Soot, char			
	BIOLOGICAL CONSTITUENTS			
Predominant mold spores :	Other			
Other fungal structures :	Mycelia, phialides, perithecia, etc.			
Pollen :	Pinus / other			
Plant fragments :	Flower parts, trichomes, etc.			
Animal fragments :	Dander / skin cells		33.3	58.1
Miscellaneous :	Insect parts			
Brown/black biogenic debris :	Decayed biogenic debris			
	ESTIMATED AREA % / NUMERICA	L RATIO %		

Date : 9/26/19

doc.rev.2019-7 4/2/19

 Indicates particle surface density (particles / mm2) cannot be calculated from the type of submitted sample Note: Sample results are only applicable to the items or locations tested

BULK DUST CONSTITUENT ANALYSIS SUMMARY - Optical Microscopy do								
1	Client Name :	Omega Environmental Services, Ir	IC.	m				
	Client project # :	2019-3488UCR					Page :	1
	Project description :	2019-3488UCR		# of to	otal pa	ges / :	sples :	5
	Client Sample # :	1-1134		5	Sampl	e colle	ected :	9/20/19
Clien	t sample description :	Stain impacted duct insulation - Sc	corr	idor (Bars þ	ene co	eived :	9/23/19
	EAA Project # :	19-1218			Re	queste	ed by :	Dr. Wade
	EAA Sample # :	1		jrh				
	Sample media :	Таре						
	Field diameter mm :	0.420		Fie	ld area	mm ² :	0.139	Cted a
Ana	lysis magnification :	500						
	Fields counted :	5						
	Report comments ? :	1	(com	ment /	concl	usion	s in rep	ort, enter t
Density	(cts/mm ²) (Y/N)? :	n						
F	BROUS CONSTITUE	NTS	1	2	3	4	5	Sub-total
	Fibrous -1 :	Cellulosic fabrics / paper						
	Fibrous -2 :	Synthetic fibers (nylon, rayon, etc.)						
	Fibrous -3 :	Clear fiberglass						
	Fibrous -4 :	Colored fiberglass	14					14

	NON-FIBROUS CONS	TITUENTS	1	2	3	4	5	Sub-total
	Non-fibrous-1:	Quartz-like, clays, soil minerals	27					27
	Non-fibrous-2 :	Gypsum-like, carbonates						
	Non-fibrous-3 :	Other / amorphous particles						
3	Non-fibrous-4 :	Unidentified opaque / corrosion / paint	6					6
1	Non fibrous-5 :	Fire indicators - Soot, char	22					22

BIOAEROSOLS		1	2	3	4	5	Sub-total
Predominant mold spores :	Other						
Other fungal structures :	Mycelia, phialides, perithecia, etc.						
Pollen :	Pinus / other						
Plant fragments :	Flower parts, trichomes, etc.						
Animal fragments :	Dander / skin cells	1					1
Miscellaneous :	Insect parts						

ORGANIC / OTHER CONSTITUENTS		2	3	4	5	Sub-total
Brown/black biogenic debris : Decayed biogenic debris						

Totals

Conclusions : No mold detected

	BULK DUST C	ONSTITUENT ANALYSIS SUMMARY - Optic	al Mic	rosco	ру			
2	Client Name :	Omega Environmental Services, Ir	IC.					
	Client project # :	2019-3488UCR						
	Project description :	2019-3488UCR						
	Client Sample # :	1A-1134						
Clie	ent sample description :	Stain impacted duct insulation - So corridor (e	ast end	d locati	on)			
	EAA Project # :	19-1218						
	EAA Sample # :	2						
	Sample media :	Таре					_	_
	Field diameter mm :	0.420		Fiel	d area (mm ²) :	0.139	Cted a
Ar	nalysis magnification :	500x						-
	Fields counted :	5						
	Report comments ? :	1	(com	ment /	concl	usions	s in rep	ort, enter t
Dens	ity (cts/mm ²) (Y/N)? :	n						
	FIBROUS CONSTITUE	NTS	1	2	3	4	5	Sub-total
	Fibrous -1 :	Cellulosic fabrics / paper	9					9
	Fibrous -2 :	Synthetic fibers (nylon, rayon, etc.)	1					1
	Fibrous -3 :	Clear fiberglass						
	Fibrous -4 :	Colored fiberglass	11					11

	NON-FIBROUS CONS	TITUENTS	1	2	3	4	5	Sub-total
	Non-fibrous-1:	Quartz-like, clays, soil minerals	55					55
	Non-fibrous-2 :	Gypsum-like, carbonates	1					1
	Non-fibrous-3 :	Other / amorphous particles						
3	Non-fibrous-4 :	Unidentified opaque / corrosion / paint	52					52
1	Non fibrous-5 :	Fire indicators - Soot, char	73					73

BIOAEROSOLS		1	2	3	4	5	Sub-total
Predominant mold spores :	Other						
Other fungal structures :	Mycelia, phialides, perithecia, etc.						
Pollen :	Pinus / other						
Plant fragments :	Flower parts, trichomes, etc.	13					13
Animal fragments :	Dander / skin cells						
Miscellaneous :	Insect parts	1					1

ORGANIC / OTHER CONSTITUENTS Brown/black biogenic debris		2	3	4	5	Sub-total
Brown/black biogenic debris : Decayed biogenic debris	1					1

BULK DUST (CONSTITUENT ANALYSIS SUMMARY - Optic	al Mic	rosco	ру			
3 Client Name :	Omega Environmental Services, Ir	IC.					
Client project # :	2019-3488UCR	1					
Project description :	2019-3488UCR						
Client Sample # :	2-1104						
Client sample description :	Stain impacted duct insulation - So corrido	or (we	st end	locati	on)		
EAA Project # :	19-1218						
EAA Sample # :	3						
Sample media :	Таре]				_	_
Field diameter mm :	0.420]	Fiel	d area ((mm²) :	0.139	Cted a
Analysis magnification :	500x						-
Fields counted :	5						
Report comments ? :	1	(com	ment /	concl	usion	s in rep	ort, enter t
Density (cts/mm ²) (Y/N)? :	N						
FIBROUS CONSTITUE	INTS	1	2	3	4	5	Sub-total
Fibrous -1 :	Cellulosic fabrics / paper	11					11
Fibrous -2 :	Synthetic fibers (nylon, rayon, etc.)	2					2
Fibrous -3 :	Clear fiberglass						
Fibrous -4 :	Colored fiberglass	18					18

	NON-FIBROUS CONS	TITUENTS	1	2	3	4	5	Sub-total
	Non-fibrous-1:	Quartz-like, clays, soil minerals	51					51
	Non-fibrous-2 :	Gypsum-like, carbonates	1					1
	Non-fibrous-3 :	Other / amorphous particles	2					2
3	Non-fibrous-4 :	Unidentified opaque / corrosion / paint	79					79
1	Non fibrous-5 :	Fire indicators - Soot, char	308					308

BIOAEROSOLS		1	2	3	4	5	Sub-total
Predominant mold spores :	Other						
Other fungal structures :	Mycelia, phialides, perithecia, etc.						
Pollen :	Pinus / other						
Plant fragments :	Flower parts, trichomes, etc.						
Animal fragments :	Dander / skin cells	16					16
Miscellaneous :	Insect parts	2					2

ORGANIC / OTHER CONSTITUENTS		2	3	4	5	Sub-total
Brown/black biogenic debris : Decayed biogenic debris	2					2

BULK	OUST C	CONSTITUENT ANALYSIS SUMMARY - Optic	al Mic	rosco	ру			
4 Client I	lame :	Omega Environmental Services, Ir	IC.					
Client pro	ject # :	2019-3488UCR						
Project descr	iption :	2019-3488UCR						
Client Sam	ple # :	2A-1104						
Client sample descr	iption :	Stain impacted duct insulation - So corrido	or (we	st end	locatio	on)		
EAA Pro	ject # :	19-1218						
EAA Sam	ple # :	4						
Sample r	nedia :	Таре					_	_
Field diamete	r mm :	0.420		Fiel	d area (mm ²) :	0.139	Cted a
Analysis magnific	ation :	500x						-
Fields co	unted :	5						
Report comme	ents ? :	1	(com	ment /	concl	usions	s in rep	ort, enter t
Density (cts/mm ²) (′/N)? :	n						
FIBROUS CONS	STITUE	NTS	1	2	3	4	5	Sub-total
Fibrou	s -1 :	Cellulosic fabrics / paper	5					5
Fibrou	s -2 :	Synthetic fibers (nylon, rayon, etc.)	1					1
Fibrou	s -3 :	Clear fiberglass						
Fibrou	s -4 :	Colored fiberglass	13					13

	NON-FIBROUS CONS	TITUENTS	1	2	3	4	5	Sub-total
	Non-fibrous-1:	Quartz-like, clays, soil minerals	61					61
	Non-fibrous-2 :	Gypsum-like, carbonates	3					3
	Non-fibrous-3 :	Other / amorphous particles	1					1
3	Non-fibrous-4 :	Unidentified opaque / corrosion / paint	85					85
1	Non fibrous-5 :	Fire indicators - Soot, char	332					332

BIOAEROSOLS		1	2	3	4	5	Sub-total
Predominant mold spores :	Other						
Other fungal structures :	Mycelia, phialides, perithecia, etc.						
Pollen :	Pinus / other						
Plant fragments :	Flower parts, trichomes, etc.						
Animal fragments :	Dander / skin cells	25					25
Miscellaneous :	Insect parts	1					1

ORGANIC / OTHER CONSTITUENTS		2	3	4	5	Sub-total
Brown/black biogenic debris : Decayed biogenic debris	3					3

	BULK DUST C	CONSTITUENT ANALYSIS SUMMARY - Optic	al Mic	rosco	ру			
5	Client Name :	Omega Environmental Services, Ir	nc.					
	Client project # :	2019-3488UCR						
	Project description :	2019-3488UCR						
	Client Sample # :	3-Blank						
Cli	ent sample description :	QAQC						
	EAA Project # :	19-1218						
	EAA Sample # :	5						
	Sample media :	Таре						_
	Field diameter mm :	1.050		Fiel	d area ((mm²) :	0.867	Cted a
A	nalysis magnification :	200						-
	Fields counted :	10						
	Report comments ? :	1	(com	ment /	' concl	usions	s in rep	ort, enter t
Dens	ity (cts/mm ²) (Y/N)? :	n						
	FIBROUS CONSTITUE	INTS	1	2	3	4	5	Sub-total
	Fibrous -1 :	Cellulosic fabrics / paper						
	Fibrous -2 :	Synthetic fibers (nylon, rayon, etc.)						
	Fibrous -3 :	Clear fiberglass						
	Fibrous -4 :	Colored fiberglass						

	NON-FIBROUS CONS	1	2	3	4	5	Sub-total	
Non-fibrous-1 : Quartz-like, clays, soil minerals								1
Non-fibrous-2 : Gypsum-like, carbonates								
	Non-fibrous-3 :	Other / amorphous particles						
3	Non-fibrous-4 :	Unidentified opaque / corrosion / paint	1					1
1	Non fibrous-5 :	Fire indicators - Soot, char						

BIOAEROSOLS		1	2	3	4	5	Sub-total
Predominant mold spores :	Other						
Other fungal structures :	Mycelia, phialides, perithecia, etc.						
Pollen :	Pinus / other						
Plant fragments :	Flower parts, trichomes, etc.						
Animal fragments :	Dander / skin cells	1					1
Miscellaneous :	Insect parts						

ORGANIC / OTHER CONSTITUENTS	1	2	3	4	5	Sub-total
Brown/black biogenic debris : Decayed biogenic debris						

3 total particles detected

	Your Contact Inform	ation	Yc	our Project	Inform	nation			
Company name:	Omega Environmenta	I Services, Inc	Client Proj.# :	2019-3488UC	R				
Address:	4570 Campus Drive, S	Suite 30	Proj. Descrip. :	Non-viable fur	ole fungi and total particulate on stain				
City/State/Zip :	Newport Beach, CA 9	2660		impacted duct	insulatio	n			
Phone # :	949-252-2145		EAA-Invoice to:	Same	x	Different -	Provide be		
Email address :	kumar@omegaenv.com, la	breports@omegaenv.com	Special						
Date collected :	09/20/19		Instructions	Email PDF Inv	oice to	Accounts Pay	vable De		
Date Submitted :	09/20/19			apdept@ome	gaenv.o	:om			
Contact Name :	Kumar Cell #949-230-4440			CC. kumar@	Domeg	aenv.com			
Contact Marile .	Ontical Microscon	w - Mold & Dust	Carlo and Carlo Subject States	Electron Mi	crosco				
Analysis A	Air / Air-O-Cell	Surface / Bulk / Tape	Construction of the local division of the lo	Bulk SEM	X-ray a	nalysis only			
requested	Airborne mold	Mold only - tape (Qualitation	ve)	Automated	air or du	ist particle and	alysis		
Check appropriate	Airborne mold & dust	Mold only - bulk (Qualitativ	/e)	Automated	Fire che	emistry analysi	S		
boxes, or describe	Airborne dust/fire residue	Surface mold tape (cts/mn	n ²)	Quantitativ	e sample	e analysis (hou	ırly)		
if the analysis is	Airborne fiberglass only	Quantitative dust (cts/mm*	²)	Other / des	scribe:				
	X Other	(Wildfire- circle one -Str	ue (cts/mm ⁻)	Dr. wades	Reques	unhu) in 0/ for fi	ungi and		
<u>-</u>		pH analysis (wildfire)	dotare moy	other partic	ulate. P	ls do not provi	de the E		
		Photo report		interpretati	ons and	comparisons.			
Analysis Turnaround	Standard - 5 Day	Rush 24 hr. 50% surc	harge*	Same da	y 100%	surcharge*			
" Must notify EAA I business day	n advance - Limit on number of n /s; for example, samples arriving	ush samples that maybe comple today for 24hr TAT are due at t	eted in a given da he next business	y. Turnaround T day, excludes w	ıme (TAT reekends	and holidays.	i in tuli		
Sample #	Description / Location			Analysis (if di	Vol. (li				
1- 1134	Stain impacted duct insula	ation - So corridor (east end	location)	Direct microso	Per bio-				
1A-1134	Stain impacted duct insul	ation - So corridor (east end	location)	and other part	iculate		area		
2- 1104	Stain impacted duct insula	ation - So corridor (west end	location)						
24-1104	Stain impacted duct insula	ation - So corridor (west end	location)						
3-ni unk	1940						NI		
2 BLWIF	Qnqu						1.11		
						.)			
E	ENVIRONMENTAL ANAL (All samples should	YSIS ASSOCIATES, INC I be sent to Michigan u	: Shipping L nless otherwi	ocation Info se discusse	rmatio d)	n			
Michigan Lab	X Attn: Joseph Heintski	II San Dieg	o - Forensic	Attn: D	aniel E	Baxter			
	306 5th Street, Suite 2/	A R	esearch Lab	5290 S	oledad	Road			
(989) 895-4447	Bay City, MI 48708	1	(858) 272-7747	San Di	ego, C	A 92109			
Relinquished / received	I (Signature)	Printed Name		Company		Date	Tim		
[White	~	T Seneviratne	/ - /	Omega Env	-	09/20/19	12.		
Dat		Dand Hunts	rul	EAA		9/23/A	11:3		
				and the second party of the second					
		CONTRACT TERM	IS		-				
By providing sig	nature authorization, the client a	CONTRACT TERM cknowledges this contract is en	AS tered into, and th	e lab work will be	e perform	ned in either S	an		

Report for:

Ms. Irene Benavides, Mr. Kumar Gunaratna, Mr. Navid Salari Omega Environmental Services, Inc.: CA 4570 Campus Drive, Ste. 30 Newport Beach, CA 92660

Regarding: Project: 2019-3488UCR; Pierce Hall-South Corridor EML ID: 2258127

Approved by:

Operations Manager Joshua Cox

Dates of Analysis: Culturable air fungi (Incl. Asp spp.): 09-27-2019

Service SOPs: Culturable air fungi (Incl. Asp spp.) (EM-MY-S-1043) AIHA-LAP, LLC accredited service, Lab ID #102297

All samples were received in acceptable condition unless noted in the Report Comments portion in the body of the report. Due to the nature of the analyses performed, field blank correction of results is not applied. The results relate only to the samples as received. Sample air volume is supplied by the client.

Eurofins EMLab P&K ("the Company") shall have no liability to the client or the client's customer with respect to decisions or recommendations made, actions taken or courses of conduct implemented by either the client or the client's customer as a result of or based upon the Test Results. In no event shall the Company be liable to the client with respect to the Test Results except for the Company's own willful misconduct or gross negligence nor shall the Company be liable for incidental or consequential damages or lost profits or revenues to the fullest extent such liability may be disclaimed by law, even if the Company has been advised of the possibility of such damages, lost profits or lost revenues. In no event shall the Company's liability with respect to the Test Results exceed the amount paid to the Company by the client therefor.

Eurofins EMLab P&K's LabServe® reporting system includes automated fail-safes to ensure that all AIHA-LAP, LLC quality requirements are met and notifications are added to reports when any quality steps remain pending.

1501 West Knudsen Drive, Phoenix, AZ 85027

(800) 651-4802 Fax (623) 780-7695 www.emlab.com

Client: Omega Environmental Services, Inc.: CA C/O: Ms. Irene Benavides, Mr. Kumar Gunaratna, MrDate of Receipt: 09-20-2019 Navid Salari Re: 2019-3488UCR; Pierce Hall-South Corridor

Date of Sampling: 09-20-2019 Date of Report: 09-27-2019

CULTURABLE AIR FUNGI REPORT

Location:	B Exterior-O E	C-1: outside South ntry	B Hallway E 1	C-2: ast at Ceiling 134	B Hallway Ea Zor	C-3: st at Breathing le 1134
Comments (see below)	N	lone		А	Ν	None
Lab ID-Version [‡] :	1073	8099-1	1073	38100-1	1073	38101-1
Analysis Date:	09/2	7/2019	09/2	27/2019	09/2	27/2019
Medium:	Ν	1EA	N	1EA	Ν	ЛЕА
	raw ct.	cfu*/m3	raw ct.	cfu*/m3	raw ct.	cfu*/m3
Aspergillus						
Aspergillus niger	1	18				
Bipolaris/Drechslera group						
Botrytis						
Chaetomium						
Cladosporium	14	250				
Curvularia						
Epicoccum						
Fusarium						
Non-sporulating fungi						
Paecilomyces						
Penicillium						
Phoma						
Phoma/coelomycetes	2	35				
Rhizopus						
Stachybotrys chartarum						
Ulocladium						
Yeasts					1	18
Positive Hole	342		342		342	
Sample volume (liters)	56.66		56.66		56.66	
§ TOTAL CFU*/M3		300		< 18		18

* cfu = colony forming units Positive hole correction chart used for all calculations Comments: A) No fungal colonies detected.

Note: Interpretation is left to the company and/or persons who conducted the field work. Variation is an inherent part of biological sampling. The presence or absence of a few genera in small numbers should not be considered abnormal.

The limit of detection is 1 raw count per volume of air sampled. The analytical sensitivity is 1 raw count/volume x the positive hole correction factor.

‡ A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

§ Total CFU/m3 has been rounded to two significant figures to reflect analytical precision.

Fungal culture types listed without a count or data entry were not detected during the course of the analysis for the respective sample.

NORMAL SPORE LEVELS: Indoor spore levels usually average 30 to 80% of the outdoor spore level at the time of sampling, with the same general distribution of spore types. Filtered air, air-conditioned air, or air remote from outside sources may average 5 to 15% of the outside air at the time of sampling. (These percentages are guidelines, only. A major factor is the accessibility of outdoor air. A residence with open doors and windows and heavy foot traffic may average 95% of the outdoor level while high rise office buildings with little air exchange may average 2%. Dusty interiors may exceed 100% of the outdoors to some degree, but will still mirror the outdoor distribution of spore types.) PROBLEM INTERIORS: A substantial increase of one or two spore types which are inconsistent with and non-reflective of the outside distribution of spore types is usually indicative of an indoor reservoir of mold growth.

1501 West Knudsen Drive, Phoenix, AZ 85027

(800) 651-4802 Fax (623) 780-7695 www.emlab.com

Client: Omega Environmental Services, Inc.: CA C/O: Ms. Irene Benavides, Mr. Kumar Gunaratna, MrDate of Receipt: 09-20-2019 Navid Salari Re: 2019-3488UCR; Pierce Hall-South Corridor

Date of Sampling: 09-20-2019 Date of Report: 09-27-2019

CULTURABLE AIR FUNGI REPORT

Location:	B Hallway W 1	C-4: fest at Ceiling 104	B Hallwa Bre Zon	C-5: y West at athing e 1104	B Q	C-6: AQC
Comments (see below)	N	Jone	Ν	Vone	١	None
Lab ID-Version‡:	1073	38102-1	1073	38103-1	1073	38104-1
Analysis Date:	09/2	27/2019	09/2	27/2019	09/2	27/2019
Medium:	N	IEA	Ν	/IEA	Ν	ЛЕА
	raw ct.	cfu*/m3	raw ct.	cfu*/m3	raw ct.	cfu*/m3
Aspergillus	1	18				
Aspergillus niger						
Botrytis						
Chaetomium						
Cladosporium	1	18	2	35		
Curvularia						
Epicoccum						
Fusarium						
Non-sporulating fungi						
Paecilomyces						
Penicillium			1	18		
Phoma						
Phoma/coelomycetes						
Rhizopus						
Stachybotrys chartarum						
Ulocladium						
Yeasts						
Positive Hole	342		342		0	
Sample volume (liters)	56.66		56.66		0	
§ TOTAL CFU*/M3		35		53		N/A

* cfu = colony forming units Positive hole correction chart used for all calculations **Comments:**

Note: Interpretation is left to the company and/or persons who conducted the field work. Variation is an inherent part of biological sampling. The presence or absence of a few genera in small numbers should not be considered abnormal.

NORMAL SPORE LEVELS: Indoor spore levels usually average 30 to 80% of the outdoor spore level at the time of sampling, with the same general distribution of spore types. Filtered air, air-conditioned air, or air remote from outside sources may average 5 to 15% of the outside air at the time of sampling. (These percentages are guidelines, only. A major factor is the accessibility of outdoor air. A residence with open doors and windows and heavy foot traffic may average 95% of the outdoor level while high rise office buildings with little air exchange may average 2%. Dusty interiors may exceed 100% of the outdoors to some degree, but will still mirror the outdoor distribution of spore types.) PROBLEM INTERIORS: A substantial increase of one or two spore types which are inconsistent with and non-reflective of the outside distribution of spore types is usually indicative of an indoor reservoir of mold growth.

The limit of detection is 1 raw count per volume of air sampled. The analytical sensitivity is 1 raw count/volume x the positive hole correction factor.

‡ A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

§ Total CFU/m3 has been rounded to two significant figures to reflect analytical precision.

Fungal culture types listed without a count or data entry were not detected during the course of the analysis for the respective sample.

Other Requests

Specify Service

REQUESTED SERVICES

(Use checkboxes below)

Culturable

BioCassette™, Andersen, SAS, Swab,

Water, Bulk, Dust, Soil, Contact Plates

Bulk

CHAIN OF CUSTODY www.EMLabPK.com

Proj Zip PO

W	eather	Fog	Rain	Snow	Wind	Clear		3
	None	Ø	Ø	Ø			1978	
T	Light				Ø		Non-C	ulturable
PN.	Moderate					× I		Tape
-	Heavy						Trap	Swab

Cherry Hill, NJ: 1936 Olney Avenue, Cherry Hill, NJ 08003 * (866) 871-1984 Phoenix, AZ: 1501 West Knudsen drive, Phoenix, AZ 85027 * (800) 651-4802 San Bruno, CA: 1150 Bayhill Drive, #100, San Bruno, CA 94066 * (866) 888-6653

												_			T				T	-		
		CONT	ACT INFORM	ATION															(00)			
Company:	Omega Environmental Se	rvices, Inc.	Address: 4570 C	ampus D	rive, Suite 30, New	port Beach, CA 92660.	11							(Bria					12 HS	(9)		
Contact:	Kumar Gunaratna		Special Instructions	E-MAIL	RESULTS TO:						~	-	-	e Bac					t (NIC	-93-1		
Phone:	949-252-2145 Off/ 949-23	0-4440 Cell		KUMAR,	, NAVID, TANYA &	IRENE					spp	spp	dde ;	Surfao		R			Cour	600/F		
	PROJECT INFO	RMATION		Т	URN AROUND TH	ME CODES (TAT)		cles	(INB)	MBX	+ Asp	dsV +	Asn s	Air & S		libsenc	nism):		e Fibe	Method		
Project ID:	2019-3488UCR			STD -	Standard (DEFAULT)			r part	ualitat	lect E	OI SUL	Q snu		aldie		ance//	iegio /	il usit	modi	EPAm		
Project Description:	Pierce Hall - South Corr	idor		ND - N	ext Business Day	Rushes received after 2 pm or on weekends, will be	Analysis	- Othe	XBIT (Q	ount D	gi (Ger	gi (Ger	Bi (Cenus	(Cultu		(Pres	(specify	hy organ	PCM A	PLM (B		
Project Zip Code:	92521	Sampling Date & Time: 0	9/20/19	SD - S	ame Business Day Rush	next business day. Please alert us in advance of	e Trap /	nalysis	copic E	Spore C	ace Fur	PIC EL	Fundi	Counts	ture	, E. 00	tration	Sewag	lysis -	alysis -	test):	Nina
PO Number:	N/A	Sampled TS		WH-V	Veekend / Holiday	weekend analysis needs.	- Spore	Trap A	Micros	itative S	la Surfa	ia Surfa	able Air	Stain &	ella cul	Coliforn	ane Fi	Trav -	tos Ana	los Ani	specify	fv Se
Sample ID	Description	n	Sample Type (Below)	TAT (Above)	Total Volume / Area (as applicable)	Notes (Time of day, Temp, RH, etc.)	Fungi	Spore	Direct	Quant	1-Med	2-Med	Culture	Gram	Legion	Total	Memb	Quanti Quanti	Asbest	Asbest	PCR (s	Spec
BC-1	Exterior - Outside South	Entry	BC	STD	56.661	9:584,68,10,59,8%					ntr	٦tr	10	in		nt	ntr		t n			
86-2	Hallway East @ Ceiling	1134	BC	STD	1	10:350 (230, 101 004	F					1		ī		E I	i,	10	后	H	H	Ħ
36-3	Hallway East @ Breathin	g zone 1134	BC	STD		10:00 (0000000000		H		H		Ť		F	H	금	1	ih	片	님	금	H
BC-4	Hallway West @ Ceiling	1104	BC	STD		10.220 122 2010 1000	片	늵	늼	H		非		H	늼	님	#	쁥	片	금	늼	H
BC-S	Hallway West @ Breathing	ng zone 1104	BC	STD		10.274 69.70 61.24	H	H	H	H		非는		금	늼		#	쁥	片	片	븕	븜
BC-6	QAQC	- 11- L	BC	STD	NIA	N/A	금	H	늼	H		╬		님	늼		÷	쁥	片	片	븕	븕
				0.0	- in	11/17	님	늼	늼	H	井	非	1	님	늼	븱	₽	쁥	븜	님	븕	4
							님	믬			非	非는		님	늼	븱	非	北님	븜	님	븱	
							H	井	님	H	井	非는		님	늼		非		님		님	
								4		1	井	ᆘ		님	늬				닏			
																		10	닏			
																						-

State and the second states of	SAMPLE TYPE CODES	Sala Savalin	Providence and	RELINQUISHED BY	DATE & TIME	RECEIVED BY	DATE & TIME
BC - BioCassette m	ST - Spore Trap: Zefon,	T - Tape	D - Dust				DATE WINE
A1S – Anderson	Allergenco, Burkard	SW - Swab	SO - Soil	T Seneviratne	09/20/19		9/20/1914:44
SAS - Surface Air Sampler	P - Potable Water	B - Bulk				0	/ /////////////////////////////////////
CP - Contact Plate	NP - Non-Potable Water	O - Other:					

By submitting this Chain of Custody, you agree to be bound by the terms and conditions set forth at http://www.emlab.com/s/main/serviceterms.html

Copyright © 2002-2012 EMLab P&K

Doc. #1192 Rev 27 Revised 4/13/2012 Page 1 of 1, QA

Report for:

Ms. Irene Benavides, Mr. Kumar Gunaratna, Mr. Navid Salari Omega Environmental Services, Inc.: CA 4570 Campus Drive, Ste. 30 Newport Beach, CA 92660

Regarding: Project: 2019-3488UCR; Pierce Hall-South Corridor EML ID: 2258125

Approved by:

Operations Manager Joshua Cox

Dates of Analysis: 1-Media fungi surface culture (Incl. Asp spp.): 10-01-2019

Service SOPs: 1-Media fungi surface culture (Incl. Asp spp.) (EM-PR-S-1040 & EM-MY-S-2584) AIHA-LAP, LLC accredited service, Lab ID #102297

All samples were received in acceptable condition unless noted in the Report Comments portion in the body of the report. Due to the nature of the analyses performed, field blank correction of results is not applied. The results relate only to the samples as received.

Eurofins EMLab P&K ("the Company") shall have no liability to the client or the client's customer with respect to decisions or recommendations made, actions taken or courses of conduct implemented by either the client or the client's customer as a result of or based upon the Test Results. In no event shall the Company be liable to the client with respect to the Test Results except for the Company's own willful misconduct or gross negligence nor shall the Company be liable for incidental or consequential damages or lost profits or revenues to the fullest extent such liability may be disclaimed by law, even if the Company has been advised of the possibility of such damages, lost profits or lost revenues. In no event shall the Company's liability with respect to the Test Results exceed the amount paid to the Company by the client therefor.

Eurofins EMLab P&K's LabServe® reporting system includes automated fail-safes to ensure that all AIHA-LAP, LLC quality requirements are met and notifications are added to reports when any quality steps remain pending.

1501 West Knudsen Drive, Phoenix, AZ 85027

Client: Omega Environmental Services, Inc.: CA C/O: Ms. Irene Benavides, Mr. Kumar Gunaratna, MrDate of Receipt: 09-20-2019 Navid Salari Re: 2019-3488UCR; Pierce Hall-South Corridor

(800) 651-4802 Fax (623) 780-7695 www.emlab.com Date of Sampling: 09-20-2019

Date of Report: 10-01-2019

Lab ID-Version‡ Location Analysis Date	Sample Size/ Report Unit	Medium	Dilution Factor	Fungal ID	Colony Counts	CFU/unit	%
10738063-1	Size:	MEA	10	Non-sporulating fungi	17	170	100
B-1	1 swab					§ Total: 170	100
Hallway 1134 East at	Unit:						
Ceiling-Duct	1 swab						
Insulation B							
Analysis date:							
10/01/2019							
Comments:							
10738064-1	Size:	MEA	10	No fungi detected			
B-2	1 swab					§ Total: < 10	100
Hallway 1104 West	Unit:						
at Ceiling-Duct	1 swab						
Insulation B							
Analysis date:							
10/01/2019							
Comments:							

FUNGAL CULTURE REPORT

The limit of detection is a raw count of 1 at the lowest dilution plated. The analytical sensitivity is equal to 1 raw count/reporting unit x the dilution factor.

‡ A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

§ Total has been rounded to two significant figures to reflect analytical precision.

Other Requests

т

REQUESTED SERVICES

(Use checkboxes below)

Culturable

BioCassette™, Andersen, SAS, Swab,

Water, Bulk, Dust, Soil, Contact Plates

CHAIN OF CUSTODY www.EMLabPK.com

Cherry Hill, NJ: 1936 Olney Avenue, Cherry Hill, NJ 08003 * (866) 871-1984 Phoenix, AZ: 1501 West Knudsen drive, Phoenix, AZ 85027 * (800) 651-4802 San Bruno, CA: 1150 Bayhill Drive, #100, San Bruno, CA 94066 * (866) 888-6653

W	eather	Fog	Rain	Snow	Wind	Clear	10.20	
	None	D	D	D	D			
6	Light					V	Non-Ci	ulturable
ev.	Moderate					~	0	Tape
7	Heavy						Trap	Swab
							map	Bulk

		CONTA	CT INFORM	ATION			ıĿ												100	Innt		
Company:	Ornega Environmental Ser	vices, Inc. A	ddress: 4570 C	ampus D	rive, Suite 30, New	port Beach, CA 92660.	11							cteria)					2001	116)		
Contact:	Kumar Gunaratna	S	pecial Instructions:	E-MAIL F	RESULTS TO:	IDENE	11				('d	() ()	6)	Ce Ba					IN UN	R-93-		
Phone:	949-252-2145 Off/ 949-230	0-4440 Cell		KUMAH,	NAVID, TANYA &	IRENE	11				15 15	ap. sp	str. sp	Surfa		(equ			200	009 pc		
	PROJECT INFO	RMATION		TURN AROUND TIME CODES (TAT)			11	ficles	(avite)	Exam	¥+0	¥ + 0	4 + 0	Air 8		Abse (Abse	anism		1 1 1 1	metho		
Project ID:	2019-3488UCR			STD -	Standard (DEFAULT)			er Da	Quality	Diract	enus (I snus	I Snus	urable of		sence	fy ong	msine	Airton	(EPA		
Project Description:	Pierce Hall - South Corri	dor		ND - N	ext Business Day	or on weekends, will be		₩0-	() WERC	Count	ngi (G	1 0 1 0 1 0	(Central)	la (Cult		of (Pre	(speci	ify ong	DO D	-PLM		
Project Zip Code:	92521	Sampling Date & Time: 09	/20/19	SD - Sa	ame Business Day Rush	next business day. Please alert us in advance of	a Tran	Inalysis	copic 6	Spore (ace Fu	aceFu	BCB FU	Count	alture	'n, E, Q	itration	a (spec	oheie aheie	allysis.	test):	BNICE
PO Number:	N/A	Sampled TS		WH-V	/eekend / Holiday	weekend analysis needs.	Short	Trap A	Micros	litative	dia Surf	lia Surt	Inc Bit	Stain &	Relia CI	Colifor	rane F	Bacteri	time An	tics Ar	specify	sify Se
Sample ID	Description	1	Sample Type (Below)	TAT (Above)	Total Volume / Area (as applicable)	Notes (Time of day, Temp, RH, etc.)	Final	Spore	Direct	Quant	1-Mec	2-Met	3-MBC	Gram	Legio	Total	Memt	MPN	Achar	Asbei	PCR	Spec
B-1	Hallway East @ Ceiling -	Duct Insulation	В	STD	NA	11:52,68,625%	C][) C			
B-2	Hallway West @ Ceiling	 Duct Insulation 	В	STD	NA	12:00,6850,59.8%	Ē				Ø][) [
																			ם ו			
] C			
																			ם נ			

	SAMPLE TYPE CODES	Marsh and and		RELINQUISHED BY	DATE & TIME	RECEIVED BY	DATE & TIME		
BC – BioCassette m	ST - Spore Trap: Zefon,	Т – ⊺аре	D – Dust	T.O	22/22/12		aboha 11.111		
A1S - Anderson	Allergenco, Burkard SW - Swab SO - So		SO - Soil	T Seneviratne	09/20/19	6	7/29/9 19.99		
SAS - Surface Air Sampler	P - Potable Water	B – Bulk				- Ot	in the second se		
CP - Contact Plate	NP - Non-Potable Water	O - Other:							

By submitting this Chain of Custody, you agree to be bound by the terms and conditions set forth at http://www.emlab.com/s/main/serviceterms.html

Copyright © 2002-2012 EMLab P&K

Doc. #1192 Rev 27 Revised 4/13/2012 Page 1 of 1, QA

IAO - Field Data Sheet

Project Number	2019-3488UCR	IH Name	T Seneviratne	
Project Name	Pierce Hall HAZ Mat Ass	Equip/SN	Hygrometer/Extech/1037978	
Project Site Address	UC, Riverside, CA	Equip/SN	Particle Counter/TSI 9306 LPC/	OMEGA
Assessment Date	09/20/19	Equip/SN		

	Outdoor Measurements: Indoor Measurement	ents: X							1
	Sample location	Sampling Time	PM ₃	PM5	PM 10	Temp ^o F	RH %	Co	mment/s
$(\tilde{1})$	1 East S. Hall outside Rm 1134	120 sec	316445	173766	39968	67.2	69.9	No activity	9:06am
$(\widetilde{\mathcal{V}})$	2 West S. Hall outside Rm 104	120 sec	63722	19764	43/2	69.4	101.3	11	q:10 dm
Â	3 Lobby	120 sec	143559	62347	14194	69.8	60.4	11	9:14am
$\tilde{(1)}$	4 East S. Hall 04351 de Rm 1134	12:22	118984	54766	13891	46.5	66.4	11	2 mm
$\tilde{(2)}$	swest Shall outside RM 1104	12:25	104570	41864	8085	68.9	62.6	1	2 mh
(4)	6 Lobby	12:28	23917	78796	16861	71-9	53.4	11	2 mh
O	7								· · · · · · · · · · · · · · · · · · ·
	8								
	9								
	10								
	11								
	12								
	13								
	14								
	15								v

Notes: PM_{10} – Particulate Matter less than (<) 10 micrometers (μ); PM_3 – Particulate Matter < 3 μ ; Mg/M^3 – Milligrams per cubic meter; ppm – Parts per million; ^{0}F – Temperature in Fahrenheit; RH% - Percent Relative Humidity;

IAQ - Field Data Sheet

Project Number	2019-3488UCR	IH Name	T Seneviratne	
Project Name	Pierce Hall HAZ Mat Ass	Equip/SN	Hygrometer/Extech/1037978	
Project Site Address	UC, Riverside, CA	Equip/SN	Particle Counter/TSI 9306 LPC/	OMEGA ENVIRONMENTAL
Assessment Date	09/20/19	Equip/SN		t a confiction of the second second

	Outdoor Measurements: X Indoor Measureme	ents:						
	Sample location	Sampling Time	PM ₃	PM5	PM 10	Temp ^o F	RH %	Comment/s
3	1 west entrance to Lobby	9.20	233342	84806	10424	69.00	60.5	Normactivity, shaded
6	2 East conthand	9.17	385336	98410	12898	70.5	60.9)I
63	3 West entrance to 1 abbr	12:31	406506	134918	19624	76.20	46.7	no actub, shaded
Ć	4 Rapt Cowhard	12:31	274250	130(02	734	58.9	60.8	no activity, shaded
C	5				20219			
	6							
	7							
	8							
	0							
	10							
	10							
	12							
	13							
	14							
	15					1		

Notes: $PM_{10} - Particulate$ Matter less than (<) 10 micrometers (μ); $PM_3 - Particulate$ Matter < 3 μ ; $Mg/M^3 - Milligrams$ per cubic meter; ppm – Parts per million; $^{\circ}F - Temperature$ in Fahrenheit; RH% - Percent Relative Humidity;

Page # _ \mathcal{V}

Appendix 3

Instrument Calibration Report

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

12524 130th Lane NE Unit A 114 Kirkland WA 98034 425-285-9102

Pine Environmental Services, Inc.

Instrument ID	34983			5	
Description	TSI 9306-04 A	Aerotrak			
Calibrated	9/18/2019 2:5	52:11PM			
Manufacturer	Tsi			State Certified	
Model Number	9306-04			Status	Pass
Serial Number/ Lot Number	93061629015			Temp °C	23.2
Location	Seattle			Humidity %	48
Department					
Group	# 1	Calibratio	on Specification	S	
Group Nan	ne Zero Test				
Test Performed: Yes	As Found F	Result: Pass		As Left Result:	Pass
Test Instruments Used Du	iring the Calib	oration			(As Of Cal Entry Date)
Test Standard ID Descript	<u>ion</u>	<u>Manufacturer</u>	<u>Model Number</u>	<u>Serial Number</u> Lot Number	<u>/</u> <u>Next Cal Date /</u> <u>Last Cal Date/ Expiration Date</u> <u>Opened Date</u>
Notes about this calibratio	n				<u>ь</u>

Calibration Result Calibration Successful Who Calibrated Tony Nguyen

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

CERTIFICATE OF CALIBRATION

TSI Incorporated, 500 Cardigan Road, Shoreview, MN 55126 USA Tel: 1-800-874-2811 1-651-490-2811 Fax: 1-651-490-3824 http://www.tsi.com

ENVIRONMENT CONDITIO	NC		Model	9306-04 93061629015	
TEMPERATURE	76.3 (24.6)	°F (°C)	Convex Minama		
RELATIVE HUMIDITY	23	%RH	SERIAL NUMBER		
BAROMETRIC PRESSURE	29.14 (986.8)	inHg (hPa)	CUSTOMER INST ID		

As LEFT AS FOUND IN TOLERANCE OUT OF TOLERANCE

AEROTRAK CALIBRATION KIT										
MEASUREMENT VARIABLE	SYSTEM ID	DATE LAST CALIBRATED	CALIBRATION DUE DATE							
7201-02F	E004434	10-02-2018	04-30-2019							
FLOW METER	E005682	05-15-2018	05-31-2019							

PARTICLE STANDARDS									
Particle Size	Standard Uncertainty	STANDARD DEVIATION	Lot No.	EXPIRATION DATE					
0.303 µm	0.003 µm	0.0047 µm	196947	4/30/2021					
0.508 µm	0.004 µm	0.0085 µm	204667	11/30/2021					
0.994 μm	0.0075 μm	0.010 µm	200992	8/31/2021					
2.92 µm	0.015 µm	0.03 µm	181443	2/28/2020					
5.020 µm	0.015 µm	0.06 µm	179268	1/31/2020					
9.850 µm	0.03 µm	0.13 µm	202929	9/30/2021					

TSI does hereby certify that the calibration performed on the above described instrument meets the requirements of ISO 21501-4. TSI does hereby certify that the above described instrument conforms to the original manufacturer's specification (not applicable to As Found data) and has been calibrated using standards whose accuracies are traceable to the United States National Institute of Standards and Technology (NIST) or has been verified with respect to instrumentation whose accuracy is traceable to NIST, or is derived from accepted values of physical constants. TSI is registered to ISO-9001;2015.

CALIBRATED

March 21, 2019

DATE

Model 9306-04 SN 93061629015 Thursday, March 21, 2019 12:42:50 AM

Page 1 of 2

CERTIFICATE OF CALIBRATION TSI Incorporated, 500 Cardigan Road, Shoreview, MN 55126 USA Tel: i-800-874-2811 1-651-490-2811 Fax: 1-651-490-3824 http://www.tsi.com

SIZE CALIBRATION AND VERIFICATION OF SIZE SETTING								
Nominal Particle Size	GAIN STAGE	DIGITAL CUTPOINT	EXPANDED UNCERTAINTY					
0.3 µm	A	40	4.1%					
0.5 µm	A	350	3.9%					
I μm	В	7	3.9%					
3 µm	В	58	3.7%					
5 µm	В	172	3.6%					
10 µm	В	570	3.6%					

COUNTING EFFICIENCY									
PARTICLE SIZE	ACTUAL	ALLOWABLE RANGE	PASS/FAIL						
0.3 µm	51%	50% ± 20%	Pass						
0.5 µm	94%	100% ± 10%	Pass						

SIZE RESOLUTION				
PARTICLE SIZE	MEASURED	ALLOWABLE RANGE	PASS/FAIL	
0.5 µm	7.8%	≤15%	Pass	

		F	ALSE COUNT RATE	,		
Sample Time (Min)	SAMPLED (L)	Measured Counts (#)	Concentration (#/M ³)	95% UCL (#/M ³)	ALLOWABLE RANGE (#/M ³)	PASS/FAIL
30	85	l	11.78	55.4	≤70.7	Pass

SAMPLING FLOW RATE (L/MIN)				
NOMINAL	ACTUAL	ERROR	ALLOWABLE RANGE	PASS/FAIL
2.83	2.83	0.0%	± 5%	Pass

SAMPLING TIME †			
MEASURED	ALLOWABLE RANGE	PASS/FAIL	
<±0.1%	± 1%	Pass	

MAXIMUM PARTICLE CONCENTRATION † 210000000 #/m3 @10% Coincidence Loss

Response Rate †		
MEASURED	ALLOWABLE RANGE	PASS/FAIL
0.08%	≤ 0.5%	Pass

† Tested and verified during product development

CALIBRATION INTERVAL		
CALIBRATION DATE	EXPIRATION DATE	
March 21, 2019	March 21, 2020	

Model 9306-04 SN 93061629015 Thursday, March 21, 2019 12:42:50 AM

Page 2 of 2

Appendix 4

Research Paper: Total Particulates and Health Effects

Total Particulates and their Effects on Human Health

Particulate Matter

Particulate matter (PM) is defined by the US Environmental Protection Agency as a complex mixture of extremely small solid particles and liquid droplets made up of many components including acids, organic chemicals, metals, and soil or dust particles (EPA 2017). PM is generated from a variety of sources and includes particles of many sizes, measured by their aerodynamic diameter, which is the diameter of the idealized spherical shape of an irregularly shaped particle. Respirable particulate matter, or the fraction of total particulates that is inhalable, is categorized by size. Widely- monitored criteria pollutants designated by EPA are those with diameters between 2.5 and 10 micrometers (PM₁₀) and less than or equal to 2.5 micrometers (PM_{2.5}). Ultrafine particles are defined as those with an aerodynamic diameter less than 0.1 micrometers. For comparison, the diameter of fine beach sand is approximately 90 micrometers in diameter. Nuisance dusts, also known as "particulates not otherwise regulated" are defined by NIOSH as dusts from solid substances without specific occupational exposure standards as defined by the OSHA Z-tables (CDC NIOSH).

Classifying Particulate Matter

Among total ambient particulate matter, the respirable fraction, or those with an aerodynamic diameter of 10 micrometers or less, is of primary health concern. $PM_{2.5}$, also known as fine particulate matter, remains airborne for extended periods due to its small size and light weight. These particles can travel large distances through indoor or outdoor environments. PM_{10} , also known as coarse particulate matter, is often formed by suspension of settled dust, evaporation of sprays, and mechanical processes including sanding, crushing, grinding, and drilling. PM_{10} does not remain airborne for long periods of time due to its larger particle size and heavier weight. These particles are often found deposited downwind of emission sources. Unlike course and fine particulate matter, ultrafine particulate matter, or PM less than 0.1 micrometers in aerodynamic diameter, are not regulated. These particles are small enough to penetrate lung tissue and enter the bloodstream directly, where they can have deleterious effects on many organ systems (Tanrikulu et al 2010). Toxicological and physiological studies have led to the generally established consideration that $PM_{2.5}$ has the greatest effect on human health (Pope & Dockery 2006).

Sources of Particulate Matter

Particulate matter releases include primary emissions, where particles are directly emitted, and secondary emissions, where particles are formed from chemical reactions in the atmosphere. These emissions can originate from mobile sources such as vehicle emissions or stationary sources including factories and refineries. Primary mobile sources include vehicle and air traffic, diesel trucks, and construction equipment, among others. A significant amount of ambient particulate pollution is generated from combustion of fossil fuels in power plants (Sarkar 2015). Additional sources of particulate matter pollution include natural processes, including wildfires, volcanos, and lightning, in addition to area sources such as pollution from cities and agricultural areas. (NPS

2018). In low income countries, biomass burning for cooking processes is a significant contributor to particulate matter pollution (Jiang & Bell 2008).

Constituents of Particulate Matter

The composition of particulate matter pollution varies greatly and depends on the source and size of particle emitted. Particulate matter consists of chemical, biological, and inert materials. These may include acids, metals, organic chemicals, pollen, fungal spores, fine soils and salts, smoke and ash, and many others (Morakinyo 2016). Course particles, or PM₁₀, are often derived from the aerosolization or resuspension of dust, soil, pollen, mold spores, and other materials. Fine and ultrafine particles, or PM_{2.5 and} PM_{0.1}, are primarily generated from combustion processes including that of vehicle fuel, power generation, and other industrial processes. These activities may generate sulfate and nitrite particles, acids, metals, polycyclic aromatic hydrocarbons, and volatile organic compounds, among others. Ultrafine particulate matter is primarily emitted through combustion processes, but generally has a short half-life and will often aggregate to form larger structures but remain as PM_{2.5} (Pope III & Dockery 2006).

Pathways of Exposure to Particulate Matter Pollution

Respiratory Exposure

The primary route of exposure to airborne particulate matter is nasal or oral inhalation (WHO) of aerosolized respirable particulates. Particle size is they key factor which influences deposition of particles in the respiratory system. Particles with a large aerodynamic diameter (>30 microns) are retained in the upper respiratory system of the head by the mechanisms of the nasal filtration system, including nasal hairs, mucus lining the nose, and impaction where the flow of air changes direction. Course particulates that do not deposit in the nose may settle in the tracheobronchial region, where they may be cleared by the cilia and mucous membrane that line the airways to be excreted by coughing or swallowing (Dockery & Pope 1994). Particles with smaller aerodynamic diameters, including fine and ultrafine particles, are capable of penetrating deeper into lung tissues, and can potentially be deposited in the alveoli, a highly vascularized region of the lung where the exchange of gases takes place. Once inhaled, particles may either be deposited somewhere along the respiratory tract or exhaled, depending on several physiological and particle-related factors (WHO 2018). Soluble particles may enter the body by dissolution at the tracheobronchial region As with all PM exposure, toxicity of inhaled ambient urban particulates and and lower. combustion products depends on the type of metal compounds and combustion-generated organic content that is present (Dockery & Pope 1994). The respiratory health effects of particulate matter exposure will be discussed below.

Ingestion Exposure and Effects

Ingestion exposure to airborne particulates can occur via contamination of food. When contaminants, including polycyclic aromatic hydrocarbons (PAH) are emitted by mobile or stationary sources, they are adsorbed onto particulate matter in the environment, where they are capable of migrating into environmental media including soil and surface water via wet or dry deposition (ECSCF 2002). For example, contaminants generated by combustion may be adsorbed

to airborne particulate matter and could impact soil and surface water during a precipitation event. It is here that contaminants may be taken up by plants used as food and can pollute the food and water supply significantly (Beamish 2011). Ingestion exposure to particulate matter has been linked to health risks including cancer in animal studies (ECSCF 2002, Garcia-Perez et al. 2010), appendicitis (Kaplan et al. 2009), bowel infections (Orazzo et al. 2009), and inflammatory bowel disease (Kaplan et al. 2010). However, effects of ingestion exposure to airborne particulates is shown to be dependent on the chemical constituents of the particulate matter (Hu et al 2012).

Dermal Exposure and Effects

Exposure to particulate matter can also occur via dermal pathways when airborne particulates are present. Dermal exposure to particulate matter occurs when aerosolized particulates in the environment are deposited onto skin and absorbed into the epidermis through hair follicles and sweat glands (Thompson 2018). Deposition and absorption of particles is dependent upon a range of physical and chemical properties of the particle and skin surface, including particle size, surface roughness, wetness, and temperature (Thompson). Thompson suggests that after all factors are considered, the average daily dermal exposure to particulate matter is around 50-100 micrograms, which is in line with a study by Vaananen and colleagues (2005), who found PAHs deposited onto the wrists of road pavers at approximately 70ng/cm². After deposition on the skin, particles move from the epidermis to the dermis, then diffuse into the bloodstream via the vasculature in the hypodermis, or third layer of skin (Thompson).

Studies have shown an increased inflammatory response following dermal exposure to particulate matter (Park et al 2018). Jin and colleagues found in an in vivo study on mice that reactive oxygen species (ROS) were produced following dermal treatment with particulate matter. Additionally, barrier-disrupted skin was seen to have deeper penetration of particulate matter (Jin 2018). Another study found that dermal exposure to PM_{10} aggravated atopic dermatitis, increased hyperpigmentation, and contributed to aging in the skin (Kang et al 2014).

Health Effects of Inhalation Exposure to Particulate Matter

The World Health Organization estimates that 4.2 million premature deaths worldwide were attributed to ambient air pollution in 2016 (WHO 2018). The health effects of PM inhalation exposure are discussed below. Future mentions of PM refer to the respirable fraction, or PM with aerodynamic diameter less than 10 micrometers.

Respiratory Effects

Since inhalation is the primary route of exposure to particulate matter, the most prevalent health outcomes resulting from exposure are respiratory effects. An inflammatory response elicited by particulate matter deposition in the airways is a common effect of exposure, which occurs by multiple channels and mechanisms (Thompson 2018). Lakey and colleagues describe a mechanism for which particulate matter exposure generates reactive oxygen species (ROS) leading to oxidative stress and adverse health effects (2016).

Particulate matter exposure has well studied effects on airway disease such as

asthma, chronic obstructive pulmonary disease (COPD), and pneumonia. One study of Canadian children under 9 years old found that increased 3-day mean increase in $PM_{2.5}$ concentration of 5.92µg/m³ increased the risk of asthma-related emergency room visits by 7.2% (Weichenthal et al. 2016). Pothirat and colleagues found an acute exacerbation of COPD with $PM_{2.5 and} PM_{10}$ exposure (2019). Hwang et al found a risk ratio of 1.07 for pneumonia for each $10\mu g/m^3$ increase in $PM_{2.5}$. PM exposure exacerbated symptoms in people with these diseases and contributed to increased respiratory symptoms and reduced lung function in those exposed (Pope and Dockery 2006).

Cardiovascular Effects

The cardiovascular system is another body system which is affected by exposure to particulate matter. Both short- and long-term exposure to ambient aerosolized particulates have been linked to cardiovascular mortality and morbidity (Pope & Dockery 2006). Fine particulate matter (PM_{2.5}) is most consistently associated with cardiovascular morbidities (Ito et al 2011). The relationship between PM exposure and ischemic stroke are well documented. One study found that for every $10\mu g/m^3$ increase in PM_{2.5}, the odds of stroke were 1.13 (Lin et al 2017). Xia et al demonstrated that acute exposure to PM_{2.5} contributed to increased cardiac arrest, particularly in those with history of stroke or who are older in age (2017). Hypertension, which is a risk factor for heart disease, was linked to PM exposure in a study which found that for every $10\mu g/m^3$ increase in PM_{2.5}, the odds of hypertension was 1.14. Jacobs et al found that fine particulate matter exposure was significantly associated with increases in systolic blood pressure and pulse pressure (2012) and Dockery et al showed a significant association between fine particulate matter and ventricular tachyarrhythmias (2011). Ambient particulate exposure has been shown to significantly contribute to cardiopulmonary disease, particularly in those susceptible or at increased risk of disease.

Reproductive Effects

In addition to cardiopulmonary health risks, particulate matter exposure has been linked to reproductive effects and adverse birth outcomes when pregnant mothers are exposed. Studies of maternal exposure to $PM_{2.5}$ have been linked to low birth weight (LBW) (Pedersen et al. 2016) and small for gestational age (SGA) (Stieb at al. 2016). A study conducted among twin pairs in Shanghai, China found a significant association between increased within-pair weight difference and intertwin birth weight discordance among children born to mothers exposed to $PM_{2.5}$ and chemical constituents of sulfate and ammonium during the third trimester (Qiao 2019).

Central Nervous System Effects

In addition to the increased risk of stroke previously described, PM can have adverse effects on the central nervous system in humans. In vitro studies show neurotoxic effects of $PM_{2.5}$ and $PM_{0.1}$ (Gillespie et al. 2013), and some ultrafine particulate matter (aerodynamic diameter less than 2.5 microns) is capable of entering the bloodstream and crossing the blood brain barrier (Shmid et al 2009, Ding et al 2016) where chemical constituents can have direct effects on the brain.

Cancers

Epidemiological and toxicological studies of health outcomes following exposure to specific chemical constituents of particulate matter have demonstrated carcinogenic effects to multiple organ systems. For example, a cross sectional study of industrial workers exposed to PM containing poly aromatic hydrocarbons (PAHs) and nitro-PAHs showed a significant increased risk of lung, skin, and bladder cancers not attributed to other occupational exposures (Boffetta et al. 1997). The European Commission linked arsenic, cadmium, chromium, and nickel- containing PM to cancers, and determined that lung cancer is the critical effect following inhalation exposure to PM. Additionally, it was determined that genotoxic carcinogenicity due to PM exposure occurs via direct as well as indirect mechanisms (European Commission). The International Agnecy for Research on Cancer classifies both particulate matter and outdoor air pollution as carcinogenic to humans (IARC 2013).

Other Effects

Increased hospital and emergency department admissions related to asthma or other respiratory issues resulting from PM exposure are widely demonstrated (Strickland et al 2010, Thurston et al 1994, Lall et al 2011) in many urban regions of the world. Cytotoxicity by both fine and course particulate matter has been demonstrated in in-vitro studies (Osornio-Vargas et all 2003). Exposure to biological components of PM, including endotoxins, mold spores, and pollen grains can lead to effects such as asthma related deaths (Targonski et al 1995), repeated wheeze (Bolte et al 2003), increased inflammation and phagocytosis (Alexis et al 2006), and increase in allergies (Adhikari et al. 2004), skin rash, headache, and fatigue (Morakinyo et al 2016).

Regulations around Ambient Particulate Matter

The US Environmental Protection Agency was required to set National Ambient Air Quality Standards (NAAQS) by the Clean Air Act. These standards identify six criteria air pollutants for which standards have been developed. The regulated pollutants are carbon monoxide, lead, nitrogen dioxide, ozone, particulate matter (both $PM_{2.5}$ and PM_{10}), and sulfur dioxide. PM has both 24-hour and 1-year standards for both fine and course particulate matter. The 24-hour standards for PM_{2.5} and PM₁₀ are 35 µg/m³ and 150 µg/m³, respectively. CDC-NIOSH has set a standard for "Particulates not otherwise regulated", or those not included in the NAAQS standards or otherwise regulated by federal agencies, including inert or nuisance dusts. This standard is an OSHA permissible exposure limit of 15mg/m³ for total dusts, and 5mg/m³ for respirable dust. The American Conference of Governmental and Industrial Hygienists has set a Threshold Limit Value (TLV) for nuisance dust of 10mg/m³.

References

- Adhikari A., Sen M.M., Gupta-Bhattacharya S., Chanda S. Airborne viable, non-viable, and allergenic fungi in a rural agricultural area of India: A 2-year study at five outdoor sampling stations. Sci. Total Environ. 2004;326:123–141. doi: 10.1016/j.scitotenv.2003.12.007.
- Alexis N.E., Lay J.C., Zeman K., Bennett W.E., Peden D.B., Soukup J.M., Devlin R.B., Becker S. Biological material on inhaled coarse fraction particulate matter activates airway phagocytes in vivo in healthy volunteers. J. Allergy Clin. Immunol. 2006;117:1396– 1403. doi: 10.1016/j.jaci.2006.02.030.
- Beamish, L. A., Osornio-Vargas, A. R., & Wine, E. (2011). Air pollution: An environmental factor contributing to intestinal disease. Journal of Crohns and Colitis, 5(4), 279–286. doi: 10.1016/j.crohns.2011.02.017
- Boffetta P., Jourenkova N., Gustavsson P. Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons. Cancer Causes Control. 1997;8:444–472. doi: 10.1023/A:1018465507029.
- Bolte G., Bischof W., Borte M., Lehmann I., Wichmann H.E., Heinrich J., LISA Study Group Early endotoxin exposure and atopy development in infants: Results of a birth cohort study. Clin. Exp. Allergy. 2003;33:770–776. doi: 10.1046/j.1365-2222.2003.01665.x.
- CDC NIOSH. Particulates (Not otherwise regulated), Particulates (Not otherwise regulated) (2018).
- Ding, Y., & Wright, J. (2016). Pathophysiological effects of particulate matter air pollution on the central nervous system. *Environmental Disease*, *1*(3), 85. doi: 10.4103/2468-5690.191932
- Dockery, D. W., & Pope, C. A. (1994). Acute Respiratory Effects of Particulate Air Pollution. *Annual Review of Public Health*, *15*(1), 107–132. doi: 10.1146/annurev.publhealth.15.1.107
- Dockery D.W., Luttman-Gibson H., Rich D.Q., Link M.S., Mittleman M.A., Gold D.R., Koutrakis P., Schwartz J.D., Verrier R.L. Association of air pollution with increased incidence of ventricular tachyarrhythmias recorded by implanted cardioverter defibrillators. Environ. Health Perspect. 2005;113:670–674. doi: 10.1289/ehp.7767.
- European Commission, European Commission (2001). Retrieved from https://ec.europa.eu/environment/archives/air/pdf/pp_as_cd_ni.pdf

- European Commission Scientific Committee on Food (ECSCF). Opinion of the Scientific Committee on Food on the risks to human health of Polycyclic Aromatic Hydrocarbons in food; 1–84 (2002). Brussels.
- García-Pérez, J., López-Cima, M. F., Pérez-Gómez, B., Aragonés, N., Pollán, M., Vidal, E., & López-Abente, G. (2010). Mortality due to tumours of the digestive system in towns lying in the vicinity of metal production and processing installations. *Science of The Total Environment*, 408(16), 3102–3112. doi: 10.1016/j.scitotenv.2010.03.051
- Gillespie P, Tajuba J, Lippmann M, Chen LC, Veronesi B. Particulate matter neurotoxicity in culture is size-dependent. Neurotoxicology 2013;36:112-7.
- Hu, X., Zhang, Y., Ding, Z., Wang, T., Lian, H., Sun, Y., & Wu, J. (2012). Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. *Atmospheric Environment*, 57, 146–152. doi: 10.1016/j.atmosenv.2012.04.056
- International Agency for Research on Cancer. IARC: Outdoor air pollution a leading environmental cause of cancer deaths, IARC: Outdoor air pollution a leading environmental cause of cancer deaths (2013). Lyon Cedex.
- Ito, K., Mathes, R., Ross, Z., Nádas, A., Thurston, G., & Matte, T. (2011). Fine Particulate Matter Constituents Associated with Cardiovascular Hospitalizations and Mortality in New York City. *Environmental Health Perspectives*, 119(4), 467–473. doi: 10.1289/ehp.1002667
- Jacobs L, Buczynska A, Walgraeve C, Delcloo A, Potgieter-Vermaak S, Van Grieken R, Demeestere K, Dewulf J, Van Langenhove H, De Backer H, Nemery B, Nawrot TS Environ Res. 2012 Aug; 117():60-7.
- Jiang, R., & Bell, M. L. (2008). A Comparison of Particulate Matter from Biomass-Burning Rural and Non-Biomass-Burning Urban Households in Northeastern China. *Environmental Health Perspectives*, 116(7), 907–914. doi: 10.1289/ehp.10622
- Jin, S.-P., Li, Z., Choi, E. K., Lee, S., Kim, Y. K., Seo, E. Y., ... Cho, S. (2018). Urban particulate matter in air pollution penetrates into the barrier-disrupted skin and produces ROS-dependent cutaneous inflammatory response in vivo. *Journal of Dermatological Science*, 91(2), 175–183. doi: 10.1016/j.jdermsci.2018.04.015

Kang JH, Song CH, Ock SM, Park* HJ. Particulate Matter and Skin. KJFP 2014;4:116-121.

Kaplan, G. G., Dixon, E., Panaccione, R., Fong, A., Chen, L., Szyszkowicz, M., ... Villeneuve,
 P. J. (2009). Effect of ambient air pollution on the incidence of appendicitis. *Canadian Medical Association Journal*, 181(9), 591–597. doi: 10.1503/cmaj.082068

- Kaplan, G. G., Hubbard, J., Korzenik, J., Sands, B. E., Panaccione, R., Ghosh, S.,
 ... Villeneuve, P. J. (2010). The Inflammatory Bowel Diseases and Ambient Air
 Pollution: A Novel Association. *American Journal of Gastroenterology*, 105(11), 2412–2419. doi: 10.1038/ajg.2010.252
- Lakey P.S.J., Berkemeier T., Tong H., et al. (2016). Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract. Sci Rep.; 6:32916.
- Lall R., Ito K., Thurston G.D. Distributed lag analyses of daily admissions and sourceapportioned fine particle air pollution. Environ. Health Perspect. 2011;119:455–460. doi: 10.1289/ehp.1002638.
- Lin, H., Guo, Y., Di, Q., Zheng, Y., Kowal, P., Xiao, J., ... Wu, F. (2017). Ambient PM 2.5 and Stroke. *Stroke*, *48*(5), 1191–1197. doi: 10.1161/strokeaha.116.015739
- Morakinyo, O., Mokgobu, M., Mukhola, M., & Hunter, R. (2016). Health Outcomes of Exposure to Biological and Chemical Components of Inhalable and Respirable Particulate Matter. *International Journal of Environmental Research and Public Health*, 13(6), 592. doi: 10.3390/ijerph13060592
- NPS. Where Does Air Pollution Come From?, Where Does Air Pollution Come From? (2018). Retrieved from https://www.nps.gov/subjects/air/sources.htm
- Orazzo, F., Nespoli, L., Ito, K., Tassinari, D., Giardina, D., Funis, M., ... Zanobetti, A. (2009). Air Pollution, Aeroallergens, and Emergency Room Visits for Acute Respiratory Diseases and Gastroenteric Disorders among Young Children in Six Italian Cities. *Environmental Health Perspectives*, 117(11), 1780–1785. doi: 10.1289/ehp.0900599
- Osornio-Vargas, A. R., Bonner, J. C., Alfaro-Moreno, E., Martínez, L., García-Cuellar, C., Rosales, S. P.-D.-L., ... Rosas, I. (2003). Proinflammatory and cytotoxic effects of Mexico City air pollution particulate matter in vitro are dependent on particle size and composition. *Environmental Health Perspectives*, 111(10), 1289–1293. doi: 10.1289/ehp.5913
- Park, S.-Y., Byun, E., Lee, J., Kim, S., & Kim, H. (2018). Air Pollution, Autophagy, and Skin Aging: Impact of Particulate Matter (PM10) on Human Dermal Fibroblasts. *International Journal of Molecular Sciences*, 19(9), 2727. doi: 10.3390/ijms19092727
- Pedersen, M., Gehring, U., Beelen, R., Wang, M., Giorgis-Allemand, L., Andersen, A.-M. N., ... Slama, R. (2016). Elemental Constituents of Particulate Matter and Newborn's Size in Eight European Cohorts. *Environmental Health Perspectives*, 124(1), 141–150. doi: 10.1289/ehp.1409546

- Pope, C. A., & Dockery, D. W. (2006). Health Effects of Fine Particulate Air Pollution: Lines that Connect. *Journal of the Air & Waste Management Association*, 56(6), 709–742. doi: 10.1080/10473289.2006.10464485
- Pothirat, C., Chaiwong, W., Liwsrisakun, C., Bumroongkit, C., Deesomchok, A., Theerakittikul, T., ... Phetsuk, N. (2019). Acute effects of air pollutants on daily mortality and hospitalizations due to cardiovascular and respiratory diseases. *Journal of Thoracic Disease*, 11(7), 3070–3083. doi: 10.21037/jtd.2019.07.37
- Qiao, P., Zhao, Y., Cai, J., Donkelaar, A. V., Martin, R., Ying, H., & Kan, H. (2019). Twin growth discordance in association with maternal exposure to fine particulate matter and its chemical constituents during late pregnancy. *Environment International*, 133, 105148. doi: 10.1016/j.envint.2019.105148
- San Joaquin Valley APCD (2012). Significant Primary and Secondary Particulate Matter Sources. Retrieved from https://www.valleyair.org/Air Quality Plans/AQ plans PM sources.htm
- Sarkar, D. (2015). Thermal Power Plant. Elsevier.
- Schmid O, Möller W, Semmler-Behnke M, Ferron GA, Karg E, Lipka J, *et al.* Dosimetry and toxicology of inhaled ultrafine particles. Biomarkers 2009;14 Suppl 1:67-73.
- Stieb, D. M., Chen, L., Beckerman, B. S., Jerrett, M., Crouse, D. L., Omariba, D. W., ... Dugandzic, R. M. (2016). Associations of Pregnancy Outcomes and PM2.5 in a National Canadian Study. *Environmental health perspectives*, 124(2), 243–249. doi:10.1289/ehp.1408995
- Strickland J., Lyndsey A., Darrow M., Klein M., Flanders W.D., Sarnet J.A., Waller L.A., Sarnat S.E., Mulholland J.A., Tolbert P.E. Short-term associations between ambient air pollutants and pediatric asthma emergency department visits. Am. J. Respir. Crit. Care Med. 2010;182:307–316. doi: 10.1164/rccm.200908-12010C
- Tanrikulu, S. et al. Ultrafine Particulate Matter Study in the San Francisco Bay Area, Ultrafine Particulate Matter Study in the San Francisco Bay Area1–11 (2010). San Francisco, CA: BAAQMD.
- Targonski, P., Persky, V., & Ramekrishnan, V. (1995). Effect of environmental molds on risk of death from asthma during the pollen season. *Journal of Allergy and Clinical Immunology*, 95(5), 955–961. doi: 10.1016/s0091-6749(95)70095-1
- Thompson, J. E. (2018). Airborne Particulate Matter. *Journal of Occupational and Environmental Medicine*, 60(5), 392–423. doi: 10.1097/jom.00000000001277

- Vaananen, V., Hameila, M., Kalliokoski, P., Nykyri, E., & Heikkila, P. (2005). Dermal Exposure to Polycyclic Aromatic Hydrocarbons among Road Pavers. *The Annals of Occupational Hygiene*, 49(2), 167–178. doi: 10.1093/annhyg/meh094
- Weichenthal, S. A., Lavigne, E., Evans, G. J., Pollitt, K. J. G., & Burnett, R. T. (2016). Fine Particulate Matter and Emergency Room Visits for Respiratory Illness. Effect Modification by Oxidative Potential. *American Journal of Respiratory and Critical Care Medicine*, 194(5), 577–586. doi: 10.1164/rccm.201512-2434oc
- Thurston G.D., Ito K., Hayes C.G., Bates D.V., Lippmann M. Respiratory hospital admissions and summertime haze air pollution in Toronto, Ontario: Consideration of the role of acid aerosols. Environ. Res. 1994;65:271–290. doi: 10.1006/enrs.1994.1037.
- What is Particulate Matter? | Environmental Protection Agency Urban Environmental Program in New England. (2017, April 10). Retrieved from https://www3.epa.gov/region1/eco/uep/particulatematter.html
- WHO. (2018, May 2). Ambient (outdoor) air quality and health. Retrieved from https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health.
- Xia, R., Zhou, G., Zhu, T., Li, X., & Wang, G. (2017). Ambient Air Pollution and Out-of-Hospital Cardiac Arrest in Beijing, China. *International Journal of Environmental Research and Public Health*, *14*(4), 423. doi: 10.3390/ijerph14040423